MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That thermokarst pit is steep-walled depression formed by thermokarst processes [10].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for breakthrough (Keyword) returned 87 results for the whole karstbase:
Showing 31 to 45 of 87
Efficient hydrologic tracer-test design for tracer-mass estimation and sample-collection frequency, 2. Experimental results, 2002, Field Ms,
Effective tracer-test design requires that the likely results be predicted in advance of test initiation to ensure tracer-test success. EHTD-predicted breakthrough curves (BTCs) for various hydrological conditions were compared with measured BTCs obtained from actual tracer tests. The hydrological conditions for the tracer tests ranged from flowing streams to porous-media systems. Tracer tests evaluated included flowing streams tracer tests conducted in small and large surface-water streams, a karst solution conduit, and a glacial-meltwater stream and porous-media systems conducted as natural-gradient, forced-gradient, injection-withdrawal, and recirculation tracer tests. Comparisons between the actual tracer tests and the predicted results showed that tracer breakthrough, hydraulic characteristics, and sample-collection frequency may be forecasted sufficiently well in most instances as to facilitate good tracer-test design. Comparisons were generally improved by including tracer decay and/or retardation in the simulations. Inclusion of tracer decay in the simulations also tended to require an increase in set average tracer concentration to facilitate matching peak concentrations in the measured BTCs, however. Both nonreactive tracer and reactive tracer predictions produced recommended sample-collection frequencies that would adequately define the actual BTCs, but estimated tracer-mass estimates were less precise

Toward a better understanding of fissure growth in karst formations: Investigations from genesis to maturation and the influence of fracture-matrix interactions., 2002, Cheung, Wendy Wai Wan

There has been interest in quantitative modeling of early karstification with the objectives of estimating time-scales of conduit growth and understanding the nature of cave patterns. In particular, the initiation phase has been studied in great detail because it is the slowest phase in the development of caverns. In this study aperture variability in a two-dimensional framework and fracture matrix interaction are studied to better understand their role in time estimations of aperture growth. The initial phase of karst development is studied from its nascent stage as a fissure into the early stages of turbulence. In uniform fissures in rapidly dissolving minerals, the concentration reaches the solubility limit within a short distance along the flow path. However, the variability in the aperture field inherently provides instabilities to the system and growth is propagated along these perturbations. Flow is focused into preferential channels which are enlarged at a faster rate than surrounding regions of slow flow. As a result, a positive feedback mechanism takes place and creates growth in a highly selective manner. Only in large domains (>25 correlation lengths), can the instabilities create competition for flow at the solution front as well and lead to significant branching. It is this branching which creates the non-monotonic behavior in breakthrough times (defined as the point in which turbulent flow is first encountered). It has been observed that the non-monotonic behavior is scale dependent. Smaller domains do not exhibit this behavior because there are only a few correlation lengths between
the fingertip and the lateral domain boundaries. Aperture variability significantly impacts dissolution patterns in a two-dimensional framework. While aperture variability speeds up growth, the inclusion of the porous bedrock can inhibit growth. The porous matrix serving as a large low - conductive reservoir can significantly influence the development of the fracture by slowing down dissolution growth through matrix diffusion. In a one dimensional model, this issue is further explored. Although the focus of the study is on modeling of early karstification, there are many common themes between this problem and other reactive transport problems that this model can be made suitable for exploring.


Basic processes and mechanisms governing the evolution of karst, 2003, Dreybrodt W, Gabrovek F.

Models of karstification based on the physics of fluid flow in fractures of soluble rock, and the physical chemistry of dissolution of limestone by CO2 containing water have been presented during the last two decades. This paper gives a review of the basic principles of such models, their most important results, and future perspectives.
The basic element of evolving karst systems is a single isolated fracture, where a constant hydraulic head drives calcite aggressive water from the input to the output. Non linear dissolution kinetics with order n = 4 induce a positive feedback by which dissolutional widening at the exit enhances flow rates thus increasing widening and so on until flow rates increase dramatically in a breakthrough event. After this the hydraulic head breaks down and widening of the fracture proceeds fast but even along its entire length under conditions of constant recharge. The significance of modelling such a single fracture results from the fact that an equation for the breakthrough time specifies the parameters determining the processes of early karstification. In a next step the boundary conditions for isolated fractures are varied by including different lithologies of the rock, expressed by different dissolution kinetics. This can enhance or retard karstification. Subterranean sources of CO2 can also be simulated by changing the equilibrium concentration of the solution at the point where CO2 is injected. This leads to accelerated karstification. At the confluence of solutions from two isolated tubes into a third one, mixing corrosion can release free carbon dioxide. Its effect to solutional widening in such a system of three conduits is discussed.
Although these simple models give interesting insights into karst processes more realistic models are required. Combining single fractures into two-dimensional networks models of karst in its dimensions of length and breadth under constant head conditions are presented. In first steps the Ford-Ewers' high-dip and low-dip models are simulated. Their results agree to what one expects from field observations. Including varying lithologies produces a variety of new features. Finally we show that mixing corrosion has a strong impact on cave evolution. By this effect micro climatic conditions in the catchment area of the cave exert significant influence. A common feature in the evolution of such two-dimensional models is the competition of various possible pathways to achieve breakthrough first. Varying conditions in lithologies, carbon dioxide injection or changing hydrological boundary conditions change the chances for the competing conduits.
Karst systems developing at steep cliffs in the dimensions of length and depth are characterized by unconfined aquifers with constant recharge to the water table. Modelling of such systems shows that dissolution of limestone occurs close to the water table. The widening of the fractures there causes lowering of the water table until it becomes stable when base level is reached, and a water table cave grows headwards into the aquifer. When prominent deep fractures with large aperture widths are present deep phreatic loops originate below the water table. A river or a lake on a karst plateau imposes constant head conditions at this location in addition to the constant recharge from meteoric precipitation. In this case a breakthrough cave system evolves along the water table kept stable by the constant head input. But simultaneously deep phreatic loops arise below it.
In conclusion we find that all cave theories such as those of Swinnerton (1932), Rhoades and Sinacori (1941), and the Four-state-model of Ford are reconciled. They are not contradictory but they result from the same physics and chemistry under different boundary conditions


Speleogenesis in carbonate rocks, 2003, Palmer, A. N.

This paper outlines the current views on cave origin in carbonate rocks, combining ideas from a variety of sources. A typical dissolution cave develops in several stages that grade smoothly from one to the next: (1) Initial openings are slowly enlarged by water that is nearly at solutional equilibrium with the local bedrock. (2) As the early routes enlarge, those with the greatest amount of flow grow fastest. (3) These favoured routes eventually become wide enough that groundwater is able to retain most of its solutional aggressiveness throughout the entire distance to the spring outlets. This breakthrough time usually requires times on the order of 104 to 105 years and ends the inception phase of speleogenesis. (4) Discharge along these selected routes increases rapidly, allowing them to enlarge into cave passages rather uniformly over their entire length. Maximum enlargement rates are roughly 0.001-0.1 cm/yr, depending on the local water chemistry and lithology. (5) The cave acquires a distinct passage pattern that depends on the nature of groundwater recharge, the geologic setting, and the erosional history of the region. Branchwork patterns dominate in most carbonate aquifers. Maze caves are produced by any of the following: steep hydraulic gradients (e.g. during floods), short flow paths, uniform recharge to many openings, and mixing of waters that contrast in chemistry. (6) Enlargement rate usually decreases as passages become air-filled, owing to loss of aggressiveness as carbon dioxide escapes through openings to the surface. (7) The cave typically evolves by diversion of water to new and lower routes as the fluvial base level drops. (8) The cave is eventually destroyed by roof collapse and by intersection of passages by surface erosion. At any given time, different parts of the same cave may be experiencing different stages in this sequence.


Interaction of Fracture and Conduit Flow in the Evolution of Karst Aquifers, 2003, Romanov D. , Dreybrodt W. , Gabrovsek F.

Karst aquifers in their initial state consist of a net of fractures with largely differing aperture widths. As a most simple example we investigate the evolution of a karst aquifer where a wide fracture with aperture width A0 = 0.03 cm is embedded into a dense net of narrow fractures of aperture widths a0 < A0. The aim of this work is to investigate the influence of the hydraulic coupling between these fractures to the evolution of the karst aquifer. The modelling domain consists of a confined aquifer, which is divided into a square network consisting of narrow fractures. In its center a straight wide fracture leads from the input at hydraulic head h to the output at head zero. We have computed the breakthrough times of this aquifer as a function of a0. For a0 = 0 the breakthrough time is that of an isolated one-dimensional fracture. As a0 is increased the breakthrough times drop until at about a0 > 0.02 cm they are reduced significantly by almost one order of magnitude. This is caused by the following mechanism. As the central tube gets enlarged into a funnel like shape from its entrance water from its tip is injected into the fine net of fractures. Therefore more aggressive solution enters into the central fracture and enhances dissolutional widening there. By this way aquifers with wide fractures embedded into a continuum of fine fractures experience accelerated karstification.


Dam sites in soluble rocks: a model of increasing leakage by dissolutional widening of fractures beneath a dam, 2003, Romanov D. , Gabrovsek F. , Dreybrodt W. ,
Water flowing through narrow fissures and fractures in soluble rock, e.g. limestone and gypsum, widens these by chemical dissolution. This process, called karstification, sculptures subterranean river systems which drain most of their catchment. Close to dam sites, unnaturally high hydraulic gradients are present to drive the water impounded in the reservoir downstream through fractures reaching below the dam. Under such conditions, the natural process of karstification is accelerated to such an extent that high leakage rates may arise, which endanger the operation of the hydraulic structure. Model simulations of karstification below dams by coupling equations of dissolutional widening to hydrodynamic flow are presented. The model scenario is a dam 100 in wide in limestone or gypsum. The modelling domain is a two-dimensional slice 1 m wide directed perpendicular to the dam. It extends 375 in vertically and 750 in horizontally. The dam is located in its center. This domain is divided by fractures and fissures into blocks of 7.5 x 7.5 x 1 m. The average aperture width of the fractures is 0.02 cm. We performed model runs on standard scenarios for a dam site in limestone with the height H of impounded water 150 in, a horizontal impermeable apron of width W=262 m and a grouting curtain reaching down to a depth of G=97 m. In a second scenario, we changed these construction features to G=187 m and W=82 m. To calculate widening of the fractures, well-established experimental data on the dissolution of limestone and gypsum have been used as they occur in such geochemical settings. All model runs show similar characteristic behaviour. Shortly after filling, the reservoir exhibits a small leakage of about 0.01 m(-3) s(-1), which increases steadily until a breakthrough event occurs after several decades with an abrupt increase of leakage to about 1 m(3) s(-1) within the short time of a few years. Then, flow in the fractures becomes turbulent and the leakage increases to 10 m(3) s(-1) in a further time span of about 10 years. The widths of the fractures are visualized in various time steps. Small channels propagate downstream and leakage rises slowly until the first channel reaches the surface downstream. Then breakthrough occurs, the laminar flow changes to turbulent and a dense net of fractures which carry flow is established. We performed a sensitivity analysis on the dependence of breakthrough times on various parameters, determining breakthrough. These are the height of impounded water H, the depth G of grouting, the average aperture width a(0) of the fractures and the chemical parameters, which are c(eq) the equilibrium concentration of Ca with respect to calcite and the Ca-concentration c(in) of the inflowing water. The results show that the most critical parameter is a(0). At fracture aperture widths of 0.01 cm, breakthrough times are above 500 years. For values of a(0)>0.02 cm, however, breakthrough times are within the lifetime of the structure. We have also modelled dam sites in gypsum, which exhibit similar breakthrough times. However, after breakthrough, owing to the much larger dissolution rates of gypsum, the time until unbearable leakage is obtained, is only a few years. The modelling can be applied to complex geological settings, as phreatic cave conduits below the dam, or a complex stratigraphy with varying properties of the rock with respect to hydraulic conductivity and solubility. A few examples are given. In conclusion, our results support the assumption that increasing leakage of dam sites may be caused by dissolutional widening of fractures. (C) 2003 Elsevier Science B.V. All rights reserved

A model comparison of karst aquifer evolution for different matrix-flow formulations, 2003, Kaufmann G. ,
The evolution of permeability and flow in a karst aquifer is studied by numerical simulations. The aquifer considered consists of a large central fracture, a network of finer fissures, and a porous rock matrix. Enlargement of both the central fracture and the fissures by chemical dissolution is possible, hence the conductivities in the fracture and the fissure system can increase with time. No dissolution is allowed in the porous rock matrix, which has a constant conductivity. How is driven by a simple fixed head boundary condition representative for the initial phase of karstification. A systematic parameter study is carried out by varying the initial width of the fissure network and the conductivity of the rock matrix, while keeping the initial width of the central fracture fixed. Key parameters such as flowrates, breakthrough times, and conductivities for the different models are compared. If either the conductivity of the rock matrix is high enough or the initial width of the fissures is large enough to carry flow, breakthrough times of the aquifer are significantly reduced, when compared to a model with low matrix conductivity and small fissures. However, due to the dissolutional widening of fissures the evolution of the aquifer is distinctively different for models with rock matrix simulated by a porous medium or a fissure network. (C) 2003 Elsevier B.V. All rights reserved

The impact of hydrochemical boundary conditions on the evolution of limestone karst aquifers, 2003, Romanov D. , Gabrovsek F. , Dreybrodt W. ,
The early evolution of karst aquifers depends on a manifold of initial and boundary conditions such as geological setting, hydrologic properties of the initial aquifer, and petrologic properties of the rock. When all water entering at various inputs into the aquifer has equal chemical composition with respect to the system H2O-CO2-CaCO3 early evolution under conditions of constant head exhibits breakthrough (BT) behaviour. If the chemical compositions of the input waters are different, deep in the aquifer where the saturated solutions mix renewed aggressiveness occurs, and additional dissolutional widening of fractures by mixing corrosion (MC) changes the hydrologic properties of the aquifer. To study the impact of MC on the evolution of karst we have modelled a simple karst aquifer consisting of a confined limestone bed, with two symmetrically located inputs at constant head and open flow conditions along the entire width at base level. To calculate dissolutional widening of the fractures the well-known dissolution kinetics of limestone was used, which is linear up to 90% of saturation with respect to calcite and then switches to a nonlinear fourth order rate law. First, two extremes are modelled: (a) Both inputs receive aggressive water of equal chemical composition with [Ca2] = 0.75[Ca2](eq). In this case two channels migrate downstream with that from one input more competitive and reaching base level first, causing BT. (b) Water at both inputs is saturated with respect to calcite, but in equilibrium with different partial pressures Of CO2. Therefore, dissolution widening can occur only where these waters mix. A central channel starts to grow extending down-head until base level is reached. Flow rates through the aquifer first rise and become constant after the channel has reached base level. In the following runs these two extreme modes of karstification are combined. The waters entering have different chemical compositions and therefore different equilibrium concentrations [Ca2](eq). This allows MC to be active. They are also undersaturated with the inflowing solutions at concentration [Ca2](in) = f[Ca2](eq) where f is the ratio of saturation. In comparison to the extreme limit (a) the action of MC now creates permeability where the solutions mix and diverts the evolution of conduits into this region. Finally one conduit reaches base level and causes BT. This behaviour is found for f = 0.7, 0.9, and 0.96. For solutions more close to equilibrium with respect to calcite (f = 0.99, 0.9925, and 0.995) BT behaviour is replaced by a steady increase in flow rates. In the early state as in the case of MC controlled evolution (case b) a central channel not connected to the input is created by MC and reaches base level. After this event, further increase in flow rates is caused by slow dissolutional widening by the slightly undersaturated input solutions flowing towards the central channel. Comparison of the various model aquifers at termination of the computer runs reveals significant differences in their properties caused solely by changes of the hydrochemical boundary conditions. (C) 2003 Elsevier Science B.V. All rights reserved

Radiometric dating of the Siloam Tunnel, Jerusalem, 2003, Frumkin, A. , Shimron, A. , And Rosenbaum, J.

The historical credibility of Biblical texts is often debated when compared with Iron Age archaeological finds. Modern scientific methods may, in principle, be used to independently date structures that seem to be mentioned in the Biblical text, in order to evaluate its historical authenticity. In reality, however, this approach is extremely difficult because of poor archaeological preservation, identification uncertainty, scarcity of datable materials, and restricted scientific access into well-identified worship sites. Due to these problems, no well-identified Biblical structure has been radiometrically dated prior to the present study. Here we report radiocarbon and U-Th dating of the Siloam Tunnel (ST), proving its Iron Age II date (Fig. 1a); we conclude that the Biblical text presents an accurate historic record of ST construction. Being one of the longest ancient water tunnels lacking intermediate shafts, dating ST is a key in determining where and when this technological breakthrough took place. ST dating also refutes a claim that ST was constructed at the 2nd century BCE.


Numerical models for mixing corrosion in natural and artificial karst environments, 2003, Kaufmann G. ,
[1] The enlargement of initially small fractures in a karst aquifer by chemical dissolution is studied. Flow in the aquifer is driven by head differences between sinks and resurgences, and flow depends on the permeability of small fissures and fractures in the aquifer. Enlargement of fractures is controlled by the chemical composition of the recharge, as water undersaturated with respect to calcite is able to dissolve material from the fracture walls. As fractures are enlarged with time, permeability within the aquifer increases significantly, and flow becomes very heterogeneous. Two different processes are considered: enlargement due to normal corrosion, where water is undersaturated with respect to calcite, and enlargement due to mixing corrosion, where two solutions saturated with respect to calcite but with different carbon dioxide concentrations mix and the resulting solution becomes undersaturated again. The importance of mixing corrosion is discussed for two boundary conditions: A natural karst aquifer is modeled with fixed recharge boundary conditions representing sinking streams, and an artificial karst aquifer is simulated with fixed head boundary conditions representing a reservoir. In both cases, mixing corrosion is important, especially if recharge is characterized by an almost saturated chemistry. Mixing corrosion significantly changes the evolving passage pattern, as dissolution due to mixing of solutions is possible deep in the aquifer. Mixing corrosion also reduces breakthrough times of the aquifer and can result in dramatic leakage underneath dam sites, even if the impounded water is almost saturated with respect to calcite

Evolution of Karst Aquifers in Natural and Man Made Environments: A Modeling Approach. Ph.D. thesis, 2003, Romanov, Douchko

The evolution of karst aquifers under various hydrological and chemical boundary conditions is studied.
In the first part the influence of exchange flow from a prominent fracture into a two-dimensional network of fissures is compared to the evolution of a fracture isolated from this net. The modeling domain is 742.5 m long and 375 m wide dissected by fractures into 100 by 51 blocks. The wide prominent fracture extends along its center, thus constituting a part of the network. Under constant head conditions between the left and the right hand side of the domain it looses flow into the network. We have studied the influence of the fracture widths of the fine net to the breakthrough time (BT) of the system. Because of loss of flow from the central fracture to the net, aggressive solution from the input enhances dissolution and breakthrough times are reduced. This effect is most effective, when the aperture width of the fine net is only smaller by about 1% than the widths of the prominent fracture, such that a large amount of water can flow into the net. To obtain further information on the processes involved, an isolated one-dimensional fracture with an additional single point of outflow from it, is investigated.
As an application of the results above, the evolution of a karst aquifer below dam sites is studied. The modeling domain is a 2D, 1 m wide vertical section of soluble rock (gypsum and limestone), perpendicular to the dam. The block extends 750 m horizontally and 375 m vertically. It is divided by fractures and fissures into blocks of 7.5 m x 7.5 m x 1m. The chemical composition of the inflowing water is equal at all input points. Because of dissolution along the fractures, a large zone of increasing permeability is created below the structure, causing high unbearable water losses from the dam site and also endangering the mechanical stability of the dam. The dependence of BT on the basic parameters - the height of the impounded water, the depth of the grouting curtain, the initial aperture widths of the fractures and the fissures, and the chemical parameters of the inflowing water (equilibrium concentration with respect to calcite and input concentration) is investigated. For fracture aperture widths larger than 0.02 cm breakthrough occurs within the lifetime of the structure.
In the second part the effect of chemical boundary conditions on the evolution of a karst aquifer is studied. The model domain is 500 m x 225 m, divided into blocks of 5 m x 5 m x 1 m by fracture network. There are two input points at constant head (25 m) at the inflow side of the block. The outflow side is open at constant head – 0 m. The hydrological boundaries are equal for all simulated scenarios. The chemical composition of the inflowing water at both inputs is varied, and the reaction of the aquifer is studied. Mixing corrosion is the reason for zones of increased permeability deep inside the aquifer along the boundary, where the solutions mix. The influence of mixing corrosion for various values of the input Ca concentration is studied. The results show two types of evolution. Breakthrough (BT) governed evolution – for values of cin<0.96?ceq, and mixing corrosion (MC) - governed evolution for values of cin>0.96?ceq. The BT - type is characterized by enlarged pathways connecting an inflow point with the outflow boundary. For increasing values of the input concentrations the effect of MC becomes stronger. For high Ca concentrations, MC is dominating. There is no considerably widened connection between the inflow points and the out flow boundary. but an enlarged channel along the mixing zone is observed. The timescale for this type of evolution is considerably longer. For solutions saturated with respect to calcite, the mixing zone is the only area of widening inside the aquifer.


Die Sandkar-Expeditionen des Landesvereins fr Hhlenkunde in Salzburg., 2004, Pointner P. , Klappacher W.
The Thorhhle (1511/153) in the central plateau of the Tennnengebirge (Salzburg) is known to the speleologists of the Salzburg Caving Club since 1934. After a series of less successful explorations in the early nineties of the last century a breakthrough could be achieved ultimatively. Several seasons of digging yielded a new cave the Fuffzger adjacent to the Thorhhle, leading to a labyrinth following the bedding planes of the Dachstein Limestone. This cave was explored to a length of more than 3 km lacking any connection to the Thorhhle. In 2000, a connection between the two systems was found. A recently discovered shaft system in the Fuffzger leads far to the North and down to a depth of -450 m. The current limit of exploration lies at a direct shaft of more than 250 m depth with tremendous dimensions. The scaling of a chimney in the Grosse Eishalle increased the total depth of the system to 472 m and the length to almost 8 km. [Thorhhle (1511/153)]

Modeling the evolution of karst aquifers and speleogenesis. The step from 1-dimensional to 2-dimensional modeling domains, 2004, Romanov D. , Gabrovsek F. , Dreybrodt W.

First models of karst evolution considered a single isolated fracture with no loss of flow along its entire length. Under conditions of constant head dissolution of limestone creates a positive feedback-loop of increase of aperture widths and flow until at breakthrough the flow and aperture width are enhanced dramatically. If a second dimension is added to this model domain, in the simplest case by an exit-tube connected to the isolated channel, water loss from the isolated channel occurs. We have investigated the influence of the water loss on the breakthrough time of the single channel. In all cases, when water loss is present, more aggressive solution enters at the input. The aggressive solutional activity penetrates deeper along the conduit. Therefore dissolutional widening at the exit is enhanced and breakthrough times are reduced. This is discussed in detail by investigating the profiles of hydraulic head, flow rates, aperture widths, and calcium concentrations along the conduit as they evolve in time and comparing them to those of the isolated 1-D conduit.
In a further step the 1-D conduit is embedded into a net of fractures with smaller aperture widths. The conduit is located in the center of the rectangular domain and connected to the 2-D net at equally spaced nodes. By this way exchange flow from the conduit into the net can arise. But also flow from the net to the conduit is possible. We have studied the evolution of this aquifer considering dissolution also in the network of the narrow fissures. Flow from the main central fracture into the net again reduces breakthrough times. After breakthrough, however, a complex exit fan evolves in the net, which later on is overprinted by a net of entrance fans propagating down flow. These fans are related to flow from the net into the central fracture. The evolution of these fans resulting finally in a maze-like structure is significant for high hydraulic gradients (i0.1) as they exist at artificial dam sites. For such situations realistic modeling has to include dissolutional widening in the net. For low hydraulic gradients, i<0.03, the evolution in the net is slow compared to that of the central conduit and therefore the aquifer is dominated by the evolution of the central fracture.


An approach to the multi-element and multi-scale classification of the Limestone Pavement environment of Hutton Roof and Farleton Fell, Cumbria, UK, 2004, Huxter, Eric Andrew

 Limestone Pavements are highly significant components of the physiographic and ecological landscapes of the UK. As relict glacial features they are subject to destruction by natural processes but also by human intervention. This thesis identifies the most effective methods to monitor such change at a variety of temporal and spatial scales, based on the Morecambe Bay pavements at Hutton Roof and Farleton Fell. The starting point for such a study is a methodology to define the baseline on which to base change detection and the key to this is the development of a suitably detailed scene model. This must reflect the environment at the macro-, meso- and micro- scales and also incorporate considerations of the dynamics involved in the landscape evolution. The scene model (the Land Surface Classification Hierarchy (LSCH)) was developed by field measurement of the reflectance spectra of the main elements, biotic and abiotic, with measurements of the pavement surface in terms of the scale of karren development and the texture of the limestone itself. Study of the DEM allowed a fractal dimension to be established and also the nature of ice-flow and its contribution to pavement development, with extending flow, entraining fractured limestone blocks above a plastic, impermeable shale band, being the main mechanism. At the meso scale pavements were classified according to clint form derived from intra-pavement trends in grike direction calculated by Preferred Direction Analysis. Measurements of the key karren forms, runnels, solution pits and pipes and grikes allow assessment of their contribution to the variability of the pavement surface as an element of the scene model through the identification of solution domains. Identification of different lithologies allowed an investigation of spatial variation across the study area, although lithological control on karren form and magnitude is weaker than variability from age of exposure as shown by statistical analysis of karren morphometry using univariate comparative methods and Link diagrams, bivariate and multivariate regression, discriminant analysis, cluster analysis, multi-dimensional scaling and star diagrams with the derived Star Index. Pavements were classified according to karren morphometry. The traditional view of pedestals as an indicator of solution rates, and hence the concentration of solution at the surface, is challenged through the investigation of water flow over the pavement surface and the consideration of the role of lichen as a protective agent as well as the size of solution pits and grike width. It is suggested that only 10% of solution potential is achieved at the surface with 43% in the immediate epikarst. From this solution rate diagrams were developed, allowing the dating of exposure of pavements. These were shown to be within the period when human impact in the area was becoming significant and confirms an early anthropogenic impact on this element of the landscape. Further to this the development of grikes as emergent features was confirmed and this linked to the concept of breakthrough, allowing a model of grike development to be proposed, an important consideration in the dynamics of pavement change. At the micro scale texture analysis allowed the calculation of fractal measures which are related to variations in reflectance. The radiometric response of biotic and abiotic elements of the scene model was analysed confirming the facility of the baseline scene reflectance model of the pavement. Remotely sensed images from the Airborne Digital Camera were linked to ATM, CASI and TM images assessing the effect of scale on change detection and the evaluation of the pavement environment.


Forecasting Versus Predicting Solute Transport in Solution Conduits for Estimating Drinking-Water Risks, 2004, Field, Malcolm S.

Contaminant releases in karstic terranes can cause rapid and devastating affects on drinking-water supplies. Because future contaminant releases are likely it is necessary that local water managers develop release scenarios so as to be prepared prior to an actual contaminant release occurring. Release scenarios may be forecasted using appropriate historical data or they may be predicted using selected measured parameters. Forecasting contaminant releases to drinking-water supplies in karstic terranes is best accomplished by conducting numerous tracer tests from each potential source location to each exposure point so that acceptable solute-transport parameters for each solution conduit may be estimated from analyses of the breakthrough curves. Compositing the numerous breakthrough curves and fitting a quintic spline allows development of a single representative breakthrough curve that may then be used to forecast the effects of a release. Predicting contaminant releases is accomplished by combining basic measured field parameters for selected solution conduits in functional relationships for application in solute-transport models. The resulting breakthrough curve and solute-transport parameters can be used to predict the effects of a release. The forecasting and prediction methodologies were tested using a hypothetical release into a solution conduit developed in a karstic aquifer. Both methods were shown to produce reasonably acceptable results. The prediction methodology produced better time-of-travel results and better mass recovery and exposure concentration results than did the forecasting methodology.


Results 31 to 45 of 87
You probably didn't submit anything to search for