MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That rebelay is the reanchoring of a rope, usually to avoid rub points or split long pitches.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for models (Keyword) returned 330 results for the whole karstbase:
Showing 316 to 330 of 330
Niche differentiation in Meta bourneti and M. menardi (Araneae, Tetragnathidae) with notes on the life history, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Meta menardi and M. bourneti are two species of spiders inhabiting caves and other subterranean habitats. The occurrence of both species within the same cave has never been proved convincingly and several authors hypothesized a complete niche differentiation mainly based on microclimatic conditions.In order to study the apparent niche differentiation of the two species, we studied several populations of M. menardi and M. bourneti occurring in six caves in the Western Italian Alps (NW Italy). A series of squared plots were monitored monthly from March 2012 to February 2013. At each survey, we counted individuals and we collected the main environmental variables at each plot, namely distance from cave entrance, structural typology (wall, floor or ceiling), light intensity, wind speed and counts of potential prey. Moreover, temperature and relative humidity were continuously logged in each cave. We run several statistical models (GLMMs) in order to relate the counts of individuals to the environmental parameters. The distance from the cave entrance, structural typology and prey availability resulted most important factors driving the abundance of both species within the cave. On the other hand, despite life cycles appeared very similar, the two species seems to exhibit different tolerance to the microclimatic variations within the cave, which emerged as the main factors determining the differentiation of their niche. At least in our study area, M. bourneti tolerates broad microclimatic fluctuations and is potentially able to colonize a wide variety of caves. On the other hand, when the climatic conditions in a cave are suitable for M. menardi (narrow ranges of relatively low temperature and high humidity), M. bourneti is excluded.


Caractérisation et modélisation hydrodynamique des karsts par réseaux de neurones. Application à l’hydrosystème du Lez , 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Virgile, Taver

Improving knowledge of karst hydrodynamics represents a global challenge for water resources because karst aquifers provide approximately 25% of the world population in fresh water. Nevertheless, complexity, anisotropy, heterogeneity, non-linearity and possible non-stationarity of these aquifers make them underexploited objects due to the difficulty to characterize their morphology and hydrodynamics. In this context, the systemic paradigm proposes others methods by studying these hydrosystems through input-output (rainfall-runoff) relations.

The approach proposed in this thesis is to use information from field measurement and from systemic analyses to constrain neural network models. The goal is to make these models interpretable in terms of hydrodynamic processes by making model functioning to be similar to natural system in order to obtain a good representation and extract knowledge from model parameters.

This work covers the association of information available on the hydrosystem with correlation and spectral analyses to develop a temporal multiresolution decomposition of variables and to constrain neural network models. A new method for variable selection, adapted to represent long term hydrodynamics of the system, has been proposed. These constrained models show very good results and allow, through their parameters, to study the temporal contribution of inputs variables to the output.

Modeling nonlinear and non-stationary hydrosystems with neural network has been improved by a novel implementation of data assimilation. More precisely, when non-stationarity is attributed to the catchment, data assimilation is used to modify the model parameters. When the inputs are non-stationary, data assimilation can be used to modify the inputs.

The modification of inputs opens considerable scope to: i) fill gaps or homogenizing time series, ii) estimate effective rainfall.

Finally, these various analyses and modeling methods, mainly developed on the karst hydrosystem Lez, can improve the knowledge of the rainfall-runoff relationship at different time scales. These methodological tools thus offer perspectives of better management of the aquifer in terms of floods and resources. The advantage of these analyses and modeling tools is that they can be applicable to other systems.


Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: The interplay of substrate, water supply, degassing, and evaporation, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Caddeo Guglielmo A. , Railsback L. Bruce, Dewaele Jo, Frau Franco

Many speleothems can be assigned to one of two morphological groups: massive speleothems, which consist of compact bulks of material, and coralloids, which are domal to digitate in form. Faster growth on protrusions of the substrate occurs in the typical growth layers of coralloids (where those layers are termed “coralloid accretions”), but it is not observed in the typical layers of massive speleothems, which in contrast tend to smoothen the speleothem surface (and can therefore be defined as "smoothing accretions"). The different growth rates on different areas of the substrate are explainable by various mechanisms of CaCO3 deposition (e.g., differential aerosol deposition, differential CO2 and/or H2O loss from a capillary film of solution, deposition in subaqueous environments). To identify the causes of formation of coralloids rather than massive speleothems, this article provides data about d13C and d18O at coeval points of both smoothing and coralloid accretions, examining the relationship between isotopic composition and the substrate morphology. In subaerial speleothems, data show an enrichment in heavy isotopes both along the direction of water flow and toward the protrusions. The first effect is due to H2O evaporation and CO2 degassing during a gravity-driven flow of water (gravity stage) and is observed in smoothing accretions; the second effect is due to evaporation and degassing during water movement by capillary action from recesses to prominences (capillary stage) and is observed in subaerial coralloids. Both effects coexist in smoothing accretions interspersed among coralloid ones (intermediate stage). Thus this study supports the origin of subaerial coralloids from dominantly capillary water and disproves their origin by deposition of aerosol from the cave air. On the other hand, subaqueous coralloids seem to form by a differential mass-transfer from a still bulk of water towards different zones of the substrate along diffusion flux vectors of nutrients perpendicular to the isodepleted surfaces. Finally, this isotopic method has proved useful to investigate the controls on speleothem morphology and to obtain additional insights on the evolution of aqueous solutions inside caves.


Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: The interplay of substrate, water supply, degassing, and evaporation, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Many speleothems can be assigned to one of two morphological groups: massive speleothems, which consist of compact bulks of material, and coralloids, which are domal to digitate in form. Faster growth on protrusions of the substrate occurs in the typical growth layers of coralloids (where those layers are termed “coralloid accretions”), but it is not observed in the typical layers of massive speleothems, which in contrast tend to smoothen the speleothem surface (and can therefore be defined as "smoothing accretions"). The different growth rates on different areas of the substrate are explainable by various mechanisms of CaCO3 deposition (e.g., differential aerosol deposition, differential CO2 and/or H2O loss from a capillary film of solution, deposition in subaqueous environments). To identify the causes of formation of coralloids rather than massive speleothems, this article provides data about d13C and d18O at coeval points of both smoothing and coralloid accretions, examining the relationship between isotopic composition and the substrate morphology. In subaerial speleothems, data show an enrichment in heavy isotopes both along the direction of water flow and toward the protrusions. The first effect is due to H2O evaporation and CO2 degassing during a gravity-driven flow of water (gravity stage) and is observed in smoothing accretions; the second effect is due to evaporation and degassing during water movement by capillary action from recesses to prominences (capillary stage) and is observed in subaerial coralloids. Both effects coexist in smoothing accretions interspersed among coralloid ones (intermediate stage). Thus this study supports the origin of subaerial coralloids from dominantly capillary water and disproves their origin by deposition of aerosol from the cave air. On the other hand, subaqueous coralloids seem to form by a differential mass-transfer from a still bulk of water towards different zones of the substrate along diffusion flux vectors of nutrients perpendicular to the isodepleted surfaces. Finally, this isotopic method has proved useful to investigate the controls on speleothem morphology and to obtain additional insights on the evolution of aqueous solutions inside caves.


A new method to quantify carbonate rock weathering, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dubois Caroline, Deceuster John, Kaufmann Olivier, Rowberry Matt D.

The structure and composition of carbonate rocks is modified greatly when they are subjected to phenomena that lead to their weathering. These processes result in the production of residual alterite whose petrophysical, mechanical, and hydrological properties differ completely to those of the unweathered rock. From a geotechnical perspective, it is important that such changes are fully understood as they affect reservoir behavior and rock mass stability. This paper presents a quantitative method of calculating a weathering index for carbonate rock samples based on a range of petrophysical models. In total, four models are proposed, each of which incorporates one or more of the processes involved in carbonate rock weathering (calcite dissolution, gravitational compaction, and the incorporation of inputs). The selected weathering processes are defined for each model along with theoretical laws that describe the development of the rock properties. Based on these laws, common properties such as rock density, porosity, and calcite carbonate content are estimated from the specific carbonate rock weathering index of the model. The propagation of measurement uncertainties through the calculations has been computed for each model in order to estimate their effects on the calculated weathering index. A new methodology is then proposed to determine the weathering index for carbonate rock samples taken from across a weathered feature and to constrain the most probable weathering scenario. This protocol is applied to a field dataset to illustrate how these petrophysical models can be used to quantify the weathering and to better understand the underlying weathering processes.


On the applicability of geomechanical models for carbonate rock masses interested by karst processes, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Rock mass classification and geomechanical models have a particular importance for carbonate rocks, due to their peculiar fabric, variability of the main features, and scarce availability of experimental data. Carbonates are particularly sensitive to syn-depositional and post-depositional diagenesis, including dissolution and karstification processes, cementation, recrystallisation, dolomitisation and replacement by other minerals. At the same time, as most of sedimentary rocks, they are typically stratified, laminated, folded, faulted and fractured. The strength and deformability of carbonate rock masses are, therefore, significantly affected by the discontinuities, as well as by their pattern and orientation with respect to the in situ stresses. Further, discontinuities generally cause a distribution of stresses in the rock mass remarkably different from those determined by the classical elastic or elasto-plastic theories for homogeneous continua. Goal of this work is the description of the difficulties in elaborating geomechanical models to depict the stress–strain behavior of karstified carbonate rock masses. Due to such difficulties, a high degree of uncertainty is also present in the selection of the most proper approach, the discontinuum one or the equivalent continuum, and in the numerical model to be used within a specific engineering application as well. The high uncertainty might cause wrong assessments as concerns the geological hazards, the design costs, and the most proper remediation works. Even though recent developments in the application of numerical modeling methods allow to simulate quite well several types of jointed rock masses, as concerns carbonate rock masses many problems in representing their complex geometry in the simulation models still remain, due to peculiarity of the structural elements, and the presence of karst features. In the common practice, the improper use of the geomechanical models comes from a superficial geological study, or from the lack of reliable geological and structural data that, as a consequence, bring to erroneous evaluations of the influence of the geological-structural features on the in situ stress state and the stress–strain rock mass behavior.


Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: The interplay of substrate, water supply, degassing, and evaporation, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Caddeo Guglielmo Angelo, Railsback Loren Bruce, De Waele Jo, Frau Franco

Many speleothems can be assigned to one of two morphological groups: massive speleothems, which consist of compact bulks of material, and coralloids, which are domal to digitate in form. Faster growth on protrusions of the substrate occurs in the typical growth layers of coralloids (where those layers are termed “coralloid accretions”),

but it is not observed in the typical layers of massive speleothems, which in contrast tend to smoothen the speleothem surface (and can therefore be defined as “smoothing accretions”). The different growth rates on different areas of the substrate are explainable by various mechanisms of CaCO3 deposition (e.g., differential aerosol deposition, differential CO2 and/or H2O loss fromacapillary filmof solution, deposition in subaqueous environments).

To identify the causes of formation of coralloids rather than massive speleothems, this article provides data about δ13C and δ18O at coeval points of both smoothing and coralloid accretions, examining the relationship between isotopic composition and the substratemorphology. In subaerial speleothems, data showenrichment in heavy isotopes both along the direction of water flow and toward the protrusions. The first effect is due to H2O evaporation and CO2 degassing during a gravity-driven flow of water (gravity stage) and is observed in smoothing accretions; the second effect is due to evaporation and degassing duringwatermovement by capillary action from recesses to prominences (capillary stage) and is observed in subaerial coralloids. Both effects coexist in smoothing accretions interspersed among coralloid ones (intermediate stage). Thus this study supports the origin of subaerial coralloids from dominantly capillary water and disproves their origin by deposition of aerosol fromthe cave air. On the other hand, subaqueous coralloids seem to form by a differential mass-transfer from a still bulk of water toward different zones of the substrate along diffusion flux vectors of nutrients perpendicular to the iso-depleted surfaces. Finally, this isotopic method has proved useful to investigate the controls on speleothem morphology and to obtain additional insights on the evolution of aqueous solutions inside caves.


International Conference on Groundwater in Karst, Programme and Abstracts, 2015, University of Birmingham, Birmingham, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Carbonate rocks present a particular challenge to hydrogeologists as the major groundwater flux is through an integrated network of dissolutionally enlarged channels that discharge via discrete springs. The channels span a very wide aperture range: the smallest are little more than micro-fractures or pathways through the rock matrix but at the other end of the spectrum (and commonly in the same rock mass) channels may grow to dimensions where they can be explored by humans and are called caves. Groundwater transmission through the smaller channels that are commonly intersected by boreholes is very slow and has often been analysed using equivalent porous media models although the limitations of such models are increasingly recognised. At the other end of the spectrum (and commonly in the same rock mass) flow through the larger conduits is analogous to ‘a surface stream with a roof’ and may be amenable to analysis by models devised for urban pipe networks. Regrettably, hydrogeologists have too often focussed on the extreme ends of the spectrum, with those carbonates possessing large and spectacular landforms regarded as “karst” whereas carbonates with little surface expression commonly, but incorrectly labelled as “non-karstic”. This can lead to failures in resource management. Britain is remarkable for the variety of carbonate rocks that crop out in a small geographical area. They range in age and type from Quaternary freshwater carbonates, through Cenozoic, Mesozoic and Paleozoic limestones and dolostones, to Proterozoic metacarbonates. All near surface British carbonates are soluble and groundwater is commonly discharged from them at springs fed by dissolutionally enlarged conduits, thereby meeting one internationally accepted definition of karst. Hence, it is very appropriate that Britain, and Birmingham as Britain's second largest city, hosts this International Conference on Groundwater in Karst. The meeting will consider the full range of carbonate groundwater systems and will also have an interdisciplinary approach to understanding karst in its fullest sense.


Hidden sinkholes and karst cavities in the travertine plateau of a highly-populated geothermal seismic territory (Tivoli, central Italy), 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Sinkholes and other karst structures in settled carbonate lands can be a significant source of hazard for humans and human works. Acque Albule, the study area of this work, is a Plio-Pleistocene basin near Rome, central Italy, superficially filled by a large and thick deposit of late Pleistocene thermogene travertine. Human activities blanket large portions of the flat territory covering most evidence from geological surface processes and potentially inducing scientists and public officials to underestimate some natural hazards including those connected with sinkholes. To contribute to the proper assessment of these hazards, a geomorphologic study of the basin was performed using digital elevation models (DEMs), recent aerial photographs, and field surveys. Historical material such as old aerial photographs and past geomorphologic studies both pre-dating the most part of quarrying and village building was also used together with memories of the elderly population. This preliminary study pointed out the presence of numerous potentially active sinkholes that are at present largely masked by either quarrying or overbuilding. Where this first study pointed out the apparent absence of sinkholes in areas characterized by high density of buildings, a detailed subsurface study was performed using properly-calibrated electrical resistivity tomography (ERT) and dynamic penetration measurements (DPSH), together with some borehole logs made available from the local municipality. This second study highlighted the presence of sinkholes and caves that are, this time, substantially hidden to the resolution of standard methods and materials such as aerial photographs, DEMs, and field surveys. Active sinkhole subsidence in the Acque Albule Basin may explain, at least in part, the frequent damages that affect numerous buildings in the area. The main conclusion from this study is that the mitigation of sinkhole hazard in highly populated areas has to pass through a thorough search of (hidden) sinkholes that can be masked by the Anthropocenic molding and blanketing of the territory. For these purposes, data from historical (pre-Anthropocene) documents as well as, where possible, subsurface investigations are fundamental.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Consider a cylindrical cave: A physicist’s view of cave and karst science , 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

We review the current understanding of the physics of caves and karst. Our review focuses on research that has used simple physically based models to improve understanding of processes that occur in karst. The topics we cover include cave atmosphere dynamics, transport within karst conduits, and models of speleogenesis and related processes. We highlight recent advances in these subjects and attempt to identify promising areas for future work. In our judgment, many of the most intriguing open questions relate to the interactions between these three groups of processes.


A Three-dimensional Statistical Model of Karst Flow Conduits, 2016,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Boudinet, P

It already exists several three-dimensional models dealing with groundwater circulation in karst systems. However, few of them are able either to give a large scale prediction of the repartition of the flow conduits or to make a comparison with real field data. Therefore, our objective is to develop a three-dimensional model about the early formation of karst flow conduits and to compare it with actual field data. This geometric and statistical model is based on percolation and random walks. It is computational and can be run on a personal computer. We examine the influence of fissures (joints and bedding planes) of variable permeability and orientations on the development or early flow conduits. The results presented here correspond to computations up to 2015. Because of long runtimes, we focused on some particular stereotypical situations, corresponding to some particular values of the parameters. Regarding the conduit patterns, the opening and directions of fissures have the same qualitative influence in the model than in actual systems. Two other predictions in good accordance with real karst are that flow conduits can either develop close to the water table or deeper, depending on the distribution of permeable fissures; and that, when viewed in the horizontal plane, conduits don't always develop close to the straight line between inlet and outlet. From a quantitative point of view, in the case of weak dips, our model predicts a realistic relationship between the stratal dip, the length of the system and the averaged depth of the conduits. Eventually, we show that the repartition of conduits depends not only on obvious geometrical parameters such as directions and sizes, but also also on other quantities difficult to measure such as the probability of finding open fissures. The lack of such data doesn't enable, at the present time, a whole comparison between model and reality.


Results 316 to 330 of 330
You probably didn't submit anything to search for