MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That attrition is the wearing away of rocks by friction [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for bat (Keyword) returned 343 results for the whole karstbase:
Showing 331 to 343 of 343
LEAD MINE CAVES IN SOUTHWESTERN WISCONSIN, USA, 2013, Day Mick, Reeder Phil

Lead ores were mined extensively in the Driftless Area of southwestern Wisconsin during the middle of the XIXth century, when the Upper Mississippi Valley Lead District was one of the major lead-producing regions in the world. Much of the ore was removed from caves that were initially entered directly from the surface or later intersected by vertical shafts or near-horizontal adits. Lead ore mining began around 1815, and was most prevalent between 1825 and 1870, with peak production in the 1840s and an almost uninterrupted decline in production after 1850. Ores were extracted from at least ten prominent mine caves in dolostones in the Platteville and Galena Formations South of the Wisconsin River, and the mine caves in total represent perhaps 50% of the local cave population. Among the more significant lead mine caves are the St. John Mine (Snake Cave), Dudley Cave, the Arthur and Company Mine Cave, the Brown and Turley Mine and the Atkinson Mine Cave. Caves North of the Wisconsin River in the Prairie du Chien Formation dolostones apparently yielded insignificant volumes of ore. Mining has altered the original caves considerably, and there remains considerable evidence of the mining, including excavated and modified passages up to 15 meters wide with rooms and pillars, drill holes and mining tools. Outside the caves there are extensive spoil piles, together with the remains of ore smelters and abandoned settlements. Although none of the lead mine caves remain active industrially, they remain import- ant in several contexts: they provide information about regional speleogenesis; they played a pivotal role in early European and African American settlement of Wisconsin; they were economically of great significance during the XIXth century; and they are important now as bat hibernacula, as caving sites and in regional tourism.


New species and new records of springtails (Hexapoda: Collembola) from caves in the Salem Plateau of Illinois, USA, 2013, Sotoadames F. N. , Taylor S. J.

The springtail (Hexapoda: Collembola) fauna of eight caves (Wizard Cave, Pautler Cave, Spider Cave, Wanda’s Waterfall Cave, Illinois Caverns, Stemler Cave, Hidden Hand Cave, and Bat Sump Cave) in the Salem Plateau of southwestern Illinois (Monroe and St. Clair counties) was surveyed in 2009 using a combination of methods, including pitfall traps, Berlese-funnel processing of litter, and hand collections by quadrat, on drip pools, free standing bait, and random locations. In total, forty-nine species of springtails were found. Four are described as new to science (Onychiurus pipistrellae n. sp., Pygmarrhopalites fransjanssens n. sp, P. incantator n. sp, and P. salemensis n. sp), four may represent new species but there is insufficient material available to prepare full descriptions (two species in the genus Superodontella, one in Pseudachorutes, one in Sminthurides), and three others (Ceratophysella cf. brevis, C. cf. lucifuga, and Folsomia cf. bisetosa) are identified to species, but differences from the nominal species suggest further studies may indicate the Illinois populations represent distinct forms. In addition, five other species represent new records for Illinois, and eighteen are new cave records for the species in North America. The new records more than double the number of springtails species known from caves in the Salem Plateau region. More than half (twenty-nine) of the species reported are ranked as rare (S1–S2) at the state level. The total number of springtail species in Salem Plateau caves could be more than twice what is recorded in the present study, and more new species and state records should be found when caves in other Illinois karst regions are more thoroughly examined.


Karst Memories Above and Beneath the See: Marseilles and Continental Shelf During the Cosquer Cave Occupation, 2014, Collinagirard, Jacques

In the south of France, the Cosquer Cave with its famous prehistoric paintings is located in a karstic area located between Marseilles and Cassis. This emerged and submerged karst is typical of karstic coasts submerged after the Late-Glacial Maximum. Ail the forms observed in the hinterland can be observed directly by scuba divers and indirectly on bathymetrie charts: lapiaz, karstic archs, sinkholes, uvala and polje. The emerged and submerged landscapes are mainly the heritage of specifie lithological conditions (Urgonian limestones) and tectonic conditions (vertical faulting network leading to coastal eollapse in theMediterranean Sea). üther elements of this submerged Iandscape are given by the traces of the last sea level rise (palaeo-shorelines and erosion platforms and notehes). AIl the area between Marseilles and La Ciotat is now established as the Calanques National Park, inc1uding the Cosquer Cave with its upper Palaeolithic rock art paintings, which adds an international archaeological interest to this exceptional natural area.


BAHAMIAN CAVES AND BLUE HOLES: EXQUISITELY PRESERVED FOSSIL ASSEMBLAGES AND TAPHONOMIC INFLUENCES, 2014, Albury N. A. , Mylroie J. E.

In The Bahamas, caves and blue holes provide clues to the geologic and climatic history of archipelago but are now emerging as windows into the ecological and cultural past of islands. Cave environments in The Bahamas alternate cyclically between vadose and phreatic conditions with sea-level change, thereby providing unique but ephemeral fossil capture and preservation conditions.

A diverse assemblage of fossil plants and animals from Sawmill Sink, an inland blue hole on Abaco Island in the northern Bahamas, has revealed a prehistoric terrestrial ecosystem with exquisitely preserved fossil assemblages that result from an unusual depositional setting. The entrance is situated in the pine forest and opens into a flooded collapse chamber that intersects horizontal conduits at depths to 54 meters. The deepest passages are filled with sea water up to an anoxic mixing zone at depths of 14 to 9 meters and into the upper surface fresh-water layer. The collapse chamber is partially filled with a large talus pile that coincides with an anoxic halocline and direct sunlight for much of the day.

During glacioeustatic sea-level lowstands in the late Pleistocene, Sawmill Sink was a dry cave, providing roosting sites for bats and owls. Accumulations of bones deposited in depths of 25 to 30 meters were subsequently preserved by sea-level rise in the Holocene. The owl roost deposits are dominated by birds but also include numerous small vertebrate species that were actively transported by owls to the roost sites.

As sea levels rose in the Holocene, Sawmill Sink became a traditional passive pitfall trap. Significant quantities of surface derived organic material collected on the upper regions of the talus at the halocline where decaying plant material produced a dense layer of peat within an anoxic mixing zone enriched with hydrogen sulfide. Vertebrate species that drowned were entombed in the peat, where conditions inhibited large scavengers, microbial decomposition, and mechanical disarticulation, contributing to the superb preserva­tion of the fossil assemblage in the upper regions of the talus.


EVOLVING INTERPRETATIONS OF HYPOGENE SPELEOGENESIS IN THE BLACK HILLS, SOUTH DAKOTA, 2014, Palmer A. N. , Palmer M. V.

The origin of caves in the Black Hills has long been debated. Their history is long and complex, involving early diagenesis, meteoric karst (now paleokarst), deep burial, tectonic uplift, and, finally, enlargement of previous voids to the caves of today. The final stage is usually the only one recognized and is the topic of this paper. Genetic hypotheses include artesian flow, rising flow (preferably thermal), diffuse infiltration, and mixing of various water sources. The last process best fits the regional setting and water chemistry.  


Deep conduit flow in karst aquifers revisited, 2014, Kaufmann Georg, Gabrovšek Franci, Romanov Douchko

Caves formed in soluble rocks such as limestone, anhydrite, or gypsum are efficient drainage paths for water moving through the aquifer from the surface of the host rock towards a resurgence. The formation of caves is controlled by the physical solution through dissociation of the host rock by water or by the chemical solution through reactions of the host rock with water enriched with carbon dioxide. Caves as large underground voids are simply the end member of secondary porosity and conductivity characterizing the aquifer.

Caves and their relation to a present or past base level are found both close to a past or present water table (water-table caves) and extending far below a past or present water table (bathy-phreatic caves). One explanation for this different speleogenetic evolution is the structural control: Fractures and bedding partings are preferentially enlarged around more prominent faults, thus the fracture density in the host rock controls the speleogenetic evolution. This widely accepted explanation [e.g. Ford and Ewers, 1978] can be extended by adding other controls, e.g. a hydraulic control: As temperature generally increases with depth, density and viscosity of water change, and particularly the reduction of viscosity due to the increase in temperature enhances flow. This hypothesis was proposed by Worthington [2001, 2004] as a major controlling factor for the evolution of deep-bathyphreatic caves.

We compare the efficiency of structural and hydraulic control on the evolution of a cave passage by numerical means, adding a third control, the chemical control to address the change in solubility of the circulating water with depth. Our results show that the increase in flow through deep bathy-phreatic passages due to the decrease in viscosity is by far outweighted by effects such as the decrease in fracture width with depth due to lithostatic stress and the decrease in solubility with depth. Hence, the existence of deep bathy-phreatic cave passages is more likely to be controlled by the structural effect of prominent faults.


Biology and ecology of Bat Cave, Grand Canyon National Park, Arizona, 2014, Pape, R. B.

A study of the biology and ecology of Bat Cave, Grand Canyon National Park, was conducted during a series of four expeditions to the cave between 1994 and 2001. A total of 27 taxa, including 5 vertebrate and 22 macro-invertebrate species, were identified as elements of the ecology of the cave. Bat Cave is the type locality for Eschatomoxys pholeter Thomas and Pape (Coleoptera: Tenebrionidae) and an undescribed genus of tineid moth, both of which were discovered during this study. Bat Cave has the most species-rich macro-invertebrate ecology currently known in a cave in the park


The mineralogical study of the Grotta Inferiore di Sant’Angelo (southern Italy), 2014, Catalano M. , Bloise A. , Miriello D. , Apollaro C. , Critelli T. , Muto F. , Cazzanelli E. , Barrese E.

In the present work, thirteen samples collected from the Grotta Inferiore di Sant’Angelo near the town of Cassano allo Jonio (Calabria region, southern Italy) were analyzed for their mineralogy. The Grotta Inferiore di Sant’Angelo is made up of subhorizontal, interlinked galleries between 400 and 450 meters above sea level. The floor is littered with deposits such as bat-guano, gypsum, and many speleothems that also cover the walls. The samples were identified and characterized by X-ray powder diffraction, scanning electron microscopy with energy dispersive spectrometer, microthermometry, and micro-Raman spectroscopy. The ten primary minerals identified in this study belong to six different groups: carbonate, sulfate, apatite, oxide and hydroxide, halide, and silicate. Clay minerals and eight other detrital minerals were also found: enstatite, rutile, magnesite, pyrite, chrysotile, quartz, dolomite, and chlorite. Characterization of cave minerals could be useful to improve the knowledge of the relation between them and the lithology of the host rocks


Genesis of folia in a non-thermal epigenic cave (Matanzas, Cuba), 2014,

Folia are an unusual speleothem type resembling inverted cups or bracket fungi. The mechanism of folia formation is not fully understood and is the subject of an ongoing debate. This study focuses on an occurrence of folia present in Santa Catalina Cave, a non-thermal epigenic cave located close to Matanzas (Cuba). The sedimentology, morphology, petrology, permeability and geochemistry of these folia have been studied to gain new insight on the processes leading to their development. It is concluded that folia in Santa Catalina Cave formed at the top of a fluctuating water body, through CO2-degassing or evaporation, which may have been enhanced by the proximity to cave entrances. Two observations strongly support our conclusions. (1) When compared to other subaqueous speleothem (e.g. cave clouds) present in the same rooms, folia occur exclusively within a limited vertical interval that likely represents an ancient water level. Folia occur together with calcite rafts and tower cones that developed, respectively, on top of and below the water level. This suggests that a fluctuating interface is required for folia formation. (2) The measured permeability of the folia is too high to trap gas bubbles. Thus, in contrast to what has been proposed in other studies, trapped bubbles of CO2 cannot be invoked as the key factor determining the genesis and morphology of folia in this subaqueous environment


Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring. , 2015,

A temperature logger, named “Niphargus”, was developed at the Geological Survey of Belgium to monitor temperature of local natural processes. It has a sensitivity of the order of a few hundredths of degrees on temperature variability in open air, caves, soils and river environment. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with integrated digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy, depending on the sampling rate and environmental conditions. A batch of Niphargus loggers was also compared to a precision thermistor to assess absolute temperature accuracy. Further characterization came from two field case studies in Belgium: monitoring of a mineralized water stream near the town of Spa and air temperature monitoring inside Han-sur-Lesse cave.


Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring. , 2015,

A temperature logger, named “Niphargus”, was developed at the Geological Survey of Belgium to monitor temperature of local natural processes. It has a sensitivity of the order of a few hundredths of degrees on temperature variability in open air, caves, soils and river environment. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with integrated digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy, depending on the sampling rate and environmental conditions. A batch of Niphargus loggers was also compared to a precision thermistor to assess absolute temperature accuracy. Further characterization came from two field case studies in Belgium: monitoring of a mineralized water stream near the town of Spa and air temperature monitoring inside Han-sur-Lesse cave.


Genesis of folia in a non-thermal epigenic cave (Matanzas, Cuba), 2015, D'angeli Ilenia Maria, De Waele Jo, Ceballo Melendres Osmany, Tisato Nicola, Sauro Francesco, Grau Gonzalez Esteban Ruben, Bernasconi Stefano, Torriani Stefano, Bontognali Tomaso Renzo Rezio

Folia are an unusual speleothem type resembling inverted cups or bracket fungi. Themechanismof folia formation is not fully understood and is the subject of an ongoing debate. This study focuses on an occurrence of folia present in Santa Catalina Cave, a non-thermal epigenic cave located close to Matanzas (Cuba). The sedimentology, morphology, petrology, permeability and geochemistry of these folia have been studied to gain new insight on the processes leading to their development. It is concluded that folia in Santa Catalina Cave formed at the top of a fluctuating water body, through CO2-degassing or evaporation, which may have been enhanced by the proximity to cave entrances. Two observations strongly support our conclusions. (1) When compared to other subaqueous speleothems (e.g. cave clouds) present in the same rooms, folia occur exclusively within a limited vertical interval that likely represents an ancient water level. Folia occur together with calcite rafts and tower cones that developed, respectively, on top of and below the water level. This suggests that a fluctuating interface is required for folia formation. (2) The measured permeability of the folia is too high to trap gas bubbles. Thus, in contrast to what has been proposed in other studies, trapped bubbles of CO2 cannot be invoked as the key factor determining the genesis and morphology of folia in this subaqueous environment.


Karst environment, 2016, Culver D. C.

Karst environments can be grouped into three broad categories, based on their vertical position in the landscape. There are surface habitats, ones exposed to light; there are shallow subterranean (aphotic) habitats oft en with small to intermediate sized spaces; there are deep subterranean habitats (caves) with large sized spaces. Faunal records are most complete for caves, and on a global basis, more than 10,000 species are limited to this habitat. Hundreds of other species, especially bats, depend on caves for some part of their life cycle. A large, but most unknown number of species are limited to shallow subterranean habitats in karst, such as epikarst and the milieu souterrain superficiel. Species in both these categories of habitats typically show a number of morphological adaptations for life in darkness, including loss of eyes and pigment, and elaboration of extra-optic sensory structures. Surface habitats, such as sinkholes, karst springs, thin soils, and rock faces, are habitats, but not always recognized as karst habitats. Both aphotic karst habitats and twilight habitats (such as open air pits) may serve as important temporary refuges for organisms avoiding temperature extremes on the surface.


Results 331 to 343 of 343
You probably didn't submit anything to search for