Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
Search in KarstBase
![]() |
![]() |
![]() |
![]() |
The Gomantong cave system of eastern Sabah, Malaysia, is well-known as an important site for harvesting edible bird-nests and, more recently, as a tourist attraction. Although the biology of the Gomantong system has been repeatedly studied, very little attention has been given to the geomorphology. Here, we report on the impact of geobiological modification in the development of the modern aspect of the cave, an important but little recognized feature of tropical caves. Basic modeling of the metabolic outputs from bats and birds (CO2, H2O, heat) reveals that post-speleogenetic biogenic corrosion can erode bedrock by between ~ 3.0 mm/ka (1 m/~300 ka) and ~ 4.6 mm/ka (1 m/~200 ka). Modeling at high densities of bats yields rates of corrosion of ~ 34 mm/ka (or 1 m/~30 ka). Sub-aerial corrosion creates a previously undescribed speleological feature, the apse-flute, which is semicircular in cross-section and ~ 80 cm wide. It is vertical regardless of rock properties, developing in parallel but apparently completely independently, and often unbroken from roof to floor. They end at a blind hemi-spherical top with no extraneous water source. Half-dome ceiling conch pockets are remnants of previous apse-fluting. Sub-cutaneous corrosion creates the floor-level guano notch formed by organic acid dissolution of bedrock in contact with guano. Speleogenetic assessment suggests that as much as 70–95% of the total volume of the modern cave may have been opened by direct subaerial biogenic dissolution and biogenically-induced collapse, and by sub-cutaneous removal of limestone, over a timescale of 1–2 Ma.
To understand cave Ostracoda assemblage composition and diversity in the western Black Sea region of Turkey, eleven caves were sampled between September and October, 2010. Seven ostracod taxa were recorded (Ilyocypris inermis, I. bradyi, Ilyocypris sp., Candona neglecta, Candona sp., Pseudocandona sp., and Heterocypris sp.) inhabiting six of eleven caves examined. Two additional taxa (Psychrodromus olivaceus and Psychrodromus sp.) were also collected outside of Çayirköyü Cave and the entrance of Aksu and Sarikaya caves, respectively. The records of adult individuals of I. inermis and I. bradyi represent the first records from cave environments, while the record of C. neglecta is only the second record from cave environments. Almost all of the caves studied were characterized by low diversity and abundance. Unweighted Pair Group Mean Averages with about 85% similarity indicated the presence of three groups comprised of three, seven and three sites respectively. Similarities based on ecological variables were higher between caves in close geographical proximity to each other compared to those farther apart. The results indicate that the occurrence of ostracods within caves is dependent on environmental conditions within the aquatic habitats present at the sites.
We analyzed hydrographs of five karst springs in southern Italy during the recession period using ten continuous years of daily discharge measurements and provided conclusions on the aquifer behavior under dry periods and droughts. A straight line was fitted to a semilogarithmic plot (log-discharge versus time), and the recession coefficient (the slope of the line generated from the equation) was calculated for each spring and for each year considered. A deviation from the straight line produced by a simple exponential decay of discharge through time provides information on the actual emptying rate of the aquifer compared to a simple exponential decline. If the recession coefficient decreases or increases, the aquifer is empting more slowly or more quickly than expected, respectively. Water level of a monitored well inside the karst catchment was also assessed and provided information on the water distribution into aquifers. The results describe the hydraulic behavior of karst aquifers during their emptying and provide information for better management of karst springs.
The central Ebro Basin is an exceptional region for studying karstification through time and under different environmental conditions, as sinkholes have been developing since the Early Pleistocene. Knowledge of active sinkholes is complemented with research on paleosinkholes and contemporary deposits. Sedimentological, mineralogical, geomorphological and structural approaches permit interpretation of the natural environmental conditions that favored karst in the past and the main genetic mechanisms involved. The sedimentary features of Pleistocene terraces indicate that they were deposited by a gravel braided fluvial system characterized by higher water and sediment availability than today, probably related to meltwater flows coming from glaciated source areas, mainly in the Pyrenees. Genesis of paleosinkholes was mainly linked to this high water supply. Some of them acted as small lakes where fine sediments are exceptionally well conserved to give clues about environmental conditions. The neoformation of palygorskite and sepiolite suggests arid to semiarid climatic conditions, in agreement with the idea of cold glacial episodes. During Pleistocene times, development of sinkholes was influenced by tectonics. Currently, the genesis and evolution of numerous sinkholes are also influenced by water supplies from human activities such as irrigation or urbanization, sharply changing the nearly steady state exhibited in the past
The Painted Cave is a subhorizontal relict tunnel passage which runs through a small karst tower, approximately 30m above the surrounding alluvial plain and adjacent to other large karst towers in Niah National Park (Sarawak, Malaysia). Lundberg and McFarlane (2011) described the occurrence, morphology and mode of formation of a crayback stalagmite close to the north entrance of the cave. The presence of numerous other crayback-like stalagmites in three zones of the same cave is reported here. Their elongated humped-back morphology indicates formation influenced by cave wind. The axial orientations of the crayback-like stalagmites are similar in each of the three cave zones, but differ between the zones. Many of the stalagmite features resemble those of crayback stalagmites, suggesting that cyanobacteria may also have played a role in their formation. The Painted Cave has large entrances at both ends. The natural light levels within the cave are sufficient for cyanobacterial growth and cave wind is noticeable. A suite of stalagmite morphologies ranging from forms that are wind influenced but abiotic, to forms that are also moderately to strongly influenced by cyanobacteria is suggested.
Lithology describes the geochemical, mineralogical, and physical properties of rocks. It plays a key role in many processes at the Earth surface, especially the fluxes of matter to soils, ecosystems, rivers, and oceans. Understanding these processes at the global scale requires a high resolution description of lithology. A new high resolution global lithological map (GLiM) was assembled from existing regional geological maps translated into lithological information with the help of regional literature. The GLiM represents the rock types of the Earth surface with 1,235,400 polygons. The lithological classification consists of three levels. The first level contains 16 lithological classes comparable to previously applied definitions in global lithological maps. The additional two levels contain 12 and 14 subclasses, respectively, which describe more specific rock attributes. According to the GLiM, the Earth is covered by 64% sediments (a third of which are carbonates), 13% metamorphics, 7% plutonics, and 6% volcanics, and 10% are covered by water or ice. The high resolution of the GLiM allows observation of regional lithological distributions which often vary from the global average. The GLiM enables regional analysis of Earth surface processes at global scales. A gridded version of the GLiM is available at the PANGEA Database (http://dx.doi.org/10.1594/PANGAEA.788537).
The new pseudoscorpion genus Lusoblothrus of the family Syarinidae is described from a cave in the Algarve region, southern Portugal, to accommodate L. aenigmaticus sp. nov., whose morphological affinities within the Holarctic syarinid fauna are not clear and resembles the Gondwanan genera. This discovery emphasizes the relevance of the Algarve region as a hotspot for relictual hypogean fauna within the Iberian Peninsula.
Volcanic caves have been little studied for their potential as sources of novel microbial species and bioactive compounds with new scaffolds. We present the first study of volcanic cave microbiology from Canada and suggest that this habitat has great potential for the isolation of novel bioactive substances. Sample locations were plotted on a contour map that was compiled in ArcView 3.2. Over 400 bacterial isolates were obtained from the Helmcken Falls cave in Wells Gray Provincial Park, British Columbia. From our preliminary screen, of 400 isolates tested, 1% showed activity against extended spectrum ß-lactamase E. coli, 1.75% against Escherichia coli, 2.25% against Acinetobacter baumannii, and 26.50% against Klebsiella pneumoniae. In addition, 10.25% showed activity against Micrococcus luteus, 2% against methicillin resistant Staphylococcus aureus, 9.25% against Mycobacterium smegmatis, 6.25% Pseudomonas aeruginosa and 7.5% against Candida albicans. Chemical and physical characteristics of three rock wall samples were studied using scanning electron microscopy and f lame atomic absorption spectrometry. Calcium (Ca), iron (Fe), and aluminum (Al) were the most abundant components while magnesium (Mg), sodium (Na), arsenic (As), lead (Pb), chromium (Cr), and barium (Ba) were second most abundant with cadmium (Cd) and potassium (K) were the least abundant in our samples. Scanning electron microscopy (SEM) showed the presence of microscopic life forms in all three rock wall samples. 16S rRNA gene sequencing of 82 isolates revealed that 65 (79.3%) of the strains belong to the Streptomyces genus and 5 (6.1%) were members of Bacillus, Pseudomonas, Nocardia and Erwinia genera. Interestingly, twelve (14.6%) of the 16S rRNA sequences showed similarity to unidentif ied ribosomal RNA sequences in the library databases, the sequences of these isolates need to be further investigated using the EzTaxon-e database (http://eztaxon-e. ezbiocloud.net/) to determine whether or not these are novel species. Nevertheless, this suggests the possibility that they could be unstudied or rare bacteria. The Helmcken Falls cave microbiome possesses a great diversity of microbes with the potential for studies of novel microbial interactions and the isolation of new types of antimicrobial agents.
The Crimean Mountains are well known from the abundance of Middle and Late Palaeolithic sites and palaeontological remains recovered from cultural layers in caves and rockshelters. The fossil-bearing deposits of Emine-Bair-Khosar Cave, located at the elevation of 1000 m on the Chatyrdag Plateau, yielded a very diverse and numerous vertebrate remains that widen the knowledge of Late Pleistocene faunal diversity in the Crimea. The assemblage comprised in total almost 50 species of vertebrates. Studies included geomorphological, geological and stratigraphic analyses as well AMS 14C dating. Faunal remains were present in ten palaeontological sites. The main bone accumulation (section Ba2) was deposited during Middle Valdai or Vytachiv (MIS 3) interstadial, and including a long time gap, to the end of the Pleistocene and the Holocene. Comparison of the Emine-Bair-Khosar fauna with vertebrate faunas of other Crimean sites showed a remarkable stability in the faunal composition and frequency during the whole MIS 3 interstadial. Steppe and other open-country species dominated in the compared assemblages, while boreal-tundra species were far less numerous. Inhabitants of forests, including red deer and some rodents, were stable members of fossil assemblages.
Rich, diverse assemblages comprising a total (live + dead) of twenty-one ostracod species belonging to fifteen genera were recovered from phreatic waters of the hypogenic Frasassi Cave system and the adjacent Frasassi sulfidic spring and Sentino River in the Marche region of the northeastern Apennines of Italy. Specimens were recovered from ten sites, eight of which were in the phreatic waters of the cave system and sampled at different times of the year over a period of five years. Approximately 6900 specimens were recovered, the vast majority of which were disarticulated valves; live ostracods were also collected. The most abundant species in the sulfidic spring and Sentino River were Prionocypris zenkeri, Herpetocypris chevreuxi, and Cypridopsis vidua, while the phreatic waters of the cave system were dominated by two putatively new stygobitic species of Mixtacandona and Pseudolimnocythere and a species that was also abundant in the sulfidic spring, Fabaeformiscandona ex gr. F. fabaeformis.
Pseudocandona ex gr. P. eremita, likely another new stygobitic species, is recorded for
the first time in Italy. The relatively high diversity of the ostracod assemblages at Frasassi
could be attributed to the heterogeneity of groundwater and associated habitats or to
niche partitioning promoted by the creation of a chemoautotrophic ecosystem based on
sulfur-oxidizing bacteria. Other possible factors are the geologic age and hydrologic
conditions of the cave and karst aquifer system that possibly originated in the early–
middle Pleistocene when topographic uplift and incision enabled deep sulfidic waters to
reach the local carbonate aquifer. Flooding or active migration would have introduced
the invertebrates that now inhabit the Frasassi Cave system
Three species of obligate subterranean asellids were previously known from Ohio, all assigned to the stygia Group of the genus Caecidotea: C. stygia, C. filicispeluncae, and C. rotunda. Caecidotea insula, n. sp., is described here from two caves on South Bass Island, Ottawa County, Ohio. This island is only 7 km from the Canadian border. The new species is assigned to an assemblage proposed here as the forbesi Group, which includes the epigean species C. forbesi, C. racovitzai, C. attenuata, and C. obtusa. Evidence suggests that C. insula evolved as the result of a groundwater invasion by ancestral C. forbesi during the late Pleistocene.
Using data from the Czech Republic, we studied the distribution of spiders in soils, crevice systems, scree and caves, i.e. subterranean habitats at depths spanning from 10 cm to 100 m. In total, we found 161 species. The number of species declines with increasing habitat depth, with a major drop in species richness at the depth of 10 meters. Thirteen species exhibit morphological adaptations to life in subterranean habitats. At depths greater than 10 meters, spider assemblages are almost exclusively composed of troglomorphic species. We propose a hypothesis of evolution of troglomorphisms at spiders during Quaternary climatic cycles.
![]() |
![]() |
![]() |
![]() |