MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That underground river, underground stream is water flowing in channels through caves, caverns, and larger galleries in karst terranes [20]. synonyms: (french.) riviere souterraine; (german.) hohlenflu., unterirdischer flu.; (greek.) ypoghios roe, potamos; (italian.) fiume sotterraneo; (russian.) podzemnaja reka; (spanish.) rio subterraneo; (turkish.) yeralti nehri, deresi; (yugoslavian.) podzemni tok, podzemna rijka, podzemna reka. see subterranean river.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for regression (Keyword) returned 49 results for the whole karstbase:
Showing 46 to 49 of 49
Eolianites and Karst Development in the Mayan Riviera, Mexico, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kelley Kristin N. , Mylroie John E. , Mylroie Joan R. , Moore Christopher M. , Collins Laura R. , Ersek Lica, Lascu Ioan, Roth Monica J. , Moore Paul J. , Passion Rex, Shaw Charles

Coastal Quintana Roo, Mexico, including islands such as Cozumel and Isla Mujeres, contains numerous ridges of Quaternary eolian calcarenite in two packages, one Pleistocene and one Holocene. The Pleistocene eolianites are recognizable in the field by well-developed terra rossa paleosol and micritic crust on the surface, containing a fossil epikarst. The foreset beds of these eolianites commonly dip below modern sea level, and fossilized plant root structures are abundant. The Holocene
eolianites lack a well-developed epikarst, and have a calcernite protosol on their surfaces. The degree of cementation, and the grain composition, are not reliable indicators of the age of Quaternary eolianites.

The Pleistocene eolianites have been previously described (e.g. Ward, 1997) as exclusively regressive-phase eolianites, formed by the regression during the oxygen isotope substages (OIS) 5a and 5c. However, certain eolianites, such as those at Playa Copal, contain flank margin caves, dissolution chambers that form by sea water/fresh water mixing in the fresh-water lens. For such mixing dissolution to occur, the eolianite must already be present. As the flank margin caves are found at elevations of 2-6 m above current sea level, the caves must have developed during the last interglacial sea-level highstand, and the eolianites could not have formed on the regression from that or younger highstands. Therefore the eolianites must be transgressive-phase
eolianites developed at the beginning of the last interglacial sea-level highstand, or either transgressive- or regressive-phase eolianites from a previous sea-level highstand that occurred earlier in the Pleistocene. There is no field evidence of oxygen isotope substage 5c or 5a eolianites as suggested by Ward (1997).

Most coastal outcrops show classic regressive–phase Pleistocene eolianites as illustrated by complex and well-developed terra rossa paleosols and epikarst, and dense arrays of fossilized plant roots. However, in addition to flank margin caves, other evidence of transgressive-phase eolianites includes notches in eolianites on the west side of Cozumel, with subtidal marine facies onlapping the notches. The absence of a paleosol between those two units indicates that the eolianite is a transgressive-phase deposit from the last interglacial. All Holocene eolianites are, by definition, transgressive-phase units.


Volcanic caves: priorities for conserving the Azorean endemic troglobiont species, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Borges Paulo A. V. Prof. , Cardoso Pedro, Amorim Isabel R. , Pereira Fernando, Constncia Joo P. , Nunes Joo C. , Barcelos Paulo, Costa Paulino, Gabriel Rosalina, Dapkeviciu Maria L.

Azorean lava-tubes and volcanic pits adequately sampled for arthropod fauna were evaluated for species diversity and rarity. An iterative partial multiple regression analysis was performed to produce a multi-criteria index (Importance Value for Cave Conservation, IV-CC) incorporating arthropod species diversity indices but also including indices qualifying cave geological and management features (e.g., the diversity of geological structures, threats, accessibility). Additionally, we calculated complementarity solutions (irreplaceability and Fraction-of-Spare measures) for each cave with different targets per species, i.e., the minimum number of caves needed for each species to be represented either once or twice. Our results clearly show that to preserve all troglobiont arthropods endemic to the Azores, it is crucial to protect several caves per island. As many as 10 and 15 caves are needed to include one or two occurrences, respectively, per species.


Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Tobin Benjamin W. , Hutchins Benjamin T. , Schwartz Benjamin F.

Seasonality in surface weather results in seasonal temperature and humidity changes in caves. Ecological and physiological differences among trogloxenes, troglophiles, and troglobionts result in species-dependent responses to this variability. To investigate these responses, we conducted five biological inventories in a marble cave in the Sierra Nevada Range, California, USA between May and December 2010. The cave was divided into six quadrats and temperature was continuously logged in each (humidity was logged at the entrance and in the deep cave). With increasing distance from the entrance, temperature changes were increasingly attenuated and lagged relative to surface temperature. Linear regressions were created to determine the relationship between measured environmental variables and diversity for cavernicoles (troglobionts and troglophiles) and trogloxenes cave– wide and in the transition zone. Diversity for cavernicoles and trogloxenes peaked in the entrance and deep cave zones, respectively. Quadrat, date, 2-week antecedent temperature average, 2-week antecedent temperature range, and trogloxene abundance explained 76% of cavernicole diversity variability. Quadrat explained 55% of trogloxene diversity variability. In the transition zone, trogloxene abundance explained 26% of cavernicole variability and 2-week antecedent temperature and 2-week antecedent temperature range explained 40% of trogloxene variability. In the transition zone, trogloxene diversity was inversely related to 2-week antecedent temperature average and 2-week antecedent temperature range, suggesting that species were moving into the transition zone when temperature was most stable. In a CCA of cavernicoles distribution data and environmental variables, 35% of variation in species-specific distributions was attributable to quadrat, and non-significant percentages were explained by date and environmental variables. Differences in assemblage structure among quadrats were largely due to differences between distributions of trogloxenes and cavernicoles, but responses varied among species. Differences are likely due to ecological niche width, physiological constraints, and competition.


Origin of the interstitial isopod Microcharon (Crustacea, Microparasellidae) from the western Languedoc and the northern Pyrenees (France) with the description of two new species, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Nicole Coineau, Claude Boutin, Malvina Artheau

The interstitial groundwater genus Microcharon (Crustacea, Isopoda, Microparasellidae) is highly diversified in southern France. A new species,Microcharon boulanouari n. sp. is described from the Aude River, whereas specimens from the Lachein River in the central Pyrenees are reassigned to another species, M. ariegensis new to Science. Microcharon boulanouarin. sp. is closely related to the species of the group rouchi and may belong to the phylogenetic western Mediterranean lineage. The two-step model of colonization and evolution provides an understanding of the origin and age of this stygobite. Microcharon boulanouari n. sp. is derived from marine ancestors that lived in the interstitial littoral shallow bottoms of the Atlantic embayment which covered southwestern France at the very beginning of the early Eocene period. Both the regression of this gulf at the start of the Eocene and the Pyrenees uplift may have played a major role in the evolutionary history through vicariance of Microcharon boulanouari n. sp. and of the northern Pyrenean species of the grouprouchi.


Results 46 to 49 of 49
You probably didn't submit anything to search for