MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That fresco is a half-section of a stalactite on the wall of a cave.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for centuries (Keyword) returned 51 results for the whole karstbase:
Showing 46 to 51 of 51
Urban speleology applied to groundwater and geo-engineering studies: underground topographic surveying of the ancient Arca Dgua galleries catchworks (Porto, NW Portugal), 2010,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Chamin H. I. , Afonso M. J. , Robalo P. M. , Rodrigues P. , Cortez C. , Monteiro Santos F. A. , Plancha J. P. , Fonseca P. E. , Gomes A. , Devyvareta N. F. , Marques J. M. , Lopes M. E. , Fontes G. , Pires A. , Rocha F.

The Porto settlement (Northwest Portugal, Iberian Peninsula) was originally built in the twelfth century and has been developed on granitic hill slopes of the Douro riverside, being one of the oldest cities in Europe. In the urban area of Porto, the second most important city of the Portuguese mainland, there is a population of about 216,000 inhabitants. This study highlights the importance of urban speleological mapping applied to groundwater and geo-engineering studies. All the water that flows from the so-called Paranhos or Arca D’Água springs is captured by catchwork galleries and their utilization date back around 1120 AD. Paranhos spring galleries catchworks (c. 3,3 km extension and a -21m below ground level) was one of the main water supplies to Porto City for more than six centuries and, nowadays, these waters are still appropriate for irrigation uses. Topographical, geological, geophysical and hydrogeological data were collected and interpreted, allowing the definition of a hydrogeotechnical zoning. All these features were mapped and overlaid using GIS mapping techniques. This multidisciplinary approach offers a good potential for reliable urban speleological and geo-engineering studies of Arca D’Água site.


Age frequency distribution and revised stable isotope curves for New Zealand speleothems: palaeoclimatic implication, 2010,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Williams P. W. , Neil H. , Zhao Jx.

The occurrence of speleothems in New Zealand with reversed magnetism indicates that secondary calcite deposition in caves has occurred for more than 780 thousand years (ka). 394 uranium-series dates on 148 speleothems show that such deposition has taken place somewhere in the country with little interruption for more than 500 ka. A relative probability distribution of speleothem ages indicates that most growth occurred in mild, moist interglacial and interstadial intervals, a conclusion reinforced by comparing peaks and troughs in the distribution with time series curves of speleothem δ18O and δ13C values. The stable isotope time series were constructed using data from 15 speleothems from two different regions of the country. The greater the number of overlapping speleothem series (i.e. the greater the sample depth) for any one region, the more confidence is justified in considering the stacked record to be representative of the region. Revising and extending earlier work, composite records are produced for central-west North Island (CWNI) and north-west South Island (NWSI). Both demonstrate that over the last 15 ka the regions responded similarly to global climatic events, but that the North Island site was also influenced by the waxing and waning of regional subtropical marine influences that penetrated from the north but did not reach the higher latitudes of the South Island. Cooling marking the commencement of the last glacial maximum (LGM) was evident from about 28 ka. There was a mid-LGM interstadial at 23-21.7 ka and Termination 1 occurred around 18.1 ka. The glacial-interglacial transition was marked by a series of negative excursions in δ18O that coincide with dated recessional moraines in South Island glaciers. A late glacial cooling event, the NZ Late Glacial Reversal, occurred from 13.4-11.2 ka and this was followed by an early Holocene optimum at 10.8 ka. Comparison of δ18O records from NWSI and EPICA DML ice-core shows climatic events in New Zealand to lag those in Antarctica by several centuries to a thousand years. Waxing and waning of subantarctic and subtropical oceanic influences in the Tasman Sea are considered the immediate drivers of palaeoclimatic change.


NALPS: a precisely dated European climate record 12060 ka, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Boch R. Cheng H. , Spotl C. , Edwards R. L. , Wang X. , Hauselmann Ph.

Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2_-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext) the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the icecore and the stalagmite chronology (ca. 2900 vs. 3650 yr). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events) and at the end of GI 21 and 25 (rebound-type events), as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented outside Greenland. 


NALPS: a precisely dated European climate record 12060 ka, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Boch R. , Cheng H. , Spotl C. , Edwards R. L. , Wang X. , Hauselmann Ph.

Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2_-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext) the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the icecore and the stalagmite chronology (ca. 2900 vs. 3650 yr). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events) and at the end of GI 21 and 25 (rebound-type events), as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented outside Greenland.

 


Hhlen in der Landesbeschreibung Germania Austriaca von Granelli (1701, 1752 und 1759) , 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gerstnersterl M, Herrmann E. , ime?kov B.
The topographical work Germania Austriaca, seu Topographia Omnium Germaniae Provinciarum, Augustissimae Domui Austriacae Haereditario Jure Subjectarum1, which was published first in 1701 and again, with some modifications, in 1752 and 1759 gives an insight into the knowledge about caves within the Austrian learned societies in times before Enlightenment took place. The latin book, originally written by Wenzel Karl Earl of Purgstall while ascribed to the Jesuit Carolo Granelli in the later editions, includes only few but detailed descriptions of some caves and karst features, taking up several pages of each edition. Purgstall wrote in a very picturesque style, which was typical for the age of Baroque. The topography shows how common knowledge of our days is influenced by standard literature of former centuries: most of the mentioned places are still regarded as outstanding natural phenomenons today. With respect to the sparse but already intensively analysed cave texts of those days, it was a surprising experience to discover this so far unnoticed standard topography of the 18th century for historical speleology.

Dinaric Karst: Geography and Geology, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Zupan Hajna, Nadja

The Dinaric karst is geographically and geologically the carbonate part of the Dinaric Mountains on the Balkan Peninsula between the Adriatic Sea and the Pannonian Basin. The Dinaric karst is a “classical” karst for many reasons: the term karst (kras) was derived from its northwest part (Kras plateau); from the region originate such international terms as polje, uvala, doline, kamenitza, and ponor; and it is also the landscape where karstology and speleology as sciences were born. The most characteristic relief forms are high karst plateaus and numerous poljes elongated in a northwest–southeast direction (“Dinaric” direction), leveled surfaces, dolines, large and deep caves, sinking rivers, and abundant springs. According to different geological, hydrological, climate, and geomorphic characteristics, the Dinaric karst can be divided into three belts parallel to the Adriatic Sea: low coastal Adriatic karst, high mountain karst, and low continental inland karst. The Dinaric karst is known also as a limestone desert, a bare rocky landscape that results from climate conditions and especially because of intense land use in past centuries.


Results 46 to 51 of 51
You probably didn't submit anything to search for