MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That section is a plot of the shape and details of a cave in a particular intersecting plane, called the section plane, which is usually vertical [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for maze cave (Keyword) returned 76 results for the whole karstbase:
Showing 46 to 60 of 76
Hypogenic caves in France. Speleogenesis and morphology of the cave systems, 2010, Audra Ph. , D'antoninebecourt J. C. , Bigot J. Y.

Hypogenic caves develop by recharge from below, not directly influenced by seepage from the overlying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint often hiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Caraman, Vallon du Salut). Often, thermal in fluences only occur as point thermal in feeders into epigenic caves (Mescla, Estramar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese deposits. The Giant Phreatic Shafts locate along regional active fault lines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to –70 m. Such a hyperkarstification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (-392 m). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidic ores. Iron deposits as massive bodies (Lagnes) or onto microbial media (Iboussires, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppresses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sbastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, producing a 3D maze cave in a stair case pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop head ward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplacement of minerals and hydrocarbons.


The impact of glacier ice-contact and subglacial hydrochemistry on evolution of maze caves: A modelling approach, 2010, Skoglund Rannveig Ovrevik, Lauritzen Steinerik, Gabrovsek Franci

Labyrinth and maze cave networks are a conspicuous feature in formerly glaciated stripe karst in Scandinavia. Often found in topographically “impossible” situations, their genesis is attributed to glacial ice-contact conditions. This is further supported by observing that individual networks may either be influent, effluent or through-flow; depending on the attitude of the host rock and former glacier directions. The ice-contact hypothesis is tested by using a finite difference, fracture network model where chemical and hydrological conditions can be varied. Subglacial chemistry alone (low partial pressure of CO2, low temperature) is not sufficient to favour mazes over linear caves. However, when coupled with high input saturation ratio, high and varied hydraulic gradients and glacial hydrology, the model produced cave patterns comparable in scale and complexity to our field examples.


Hypogenic caves in France. Speleogenesis and morphology of the cave systems, 2010, Audra Philippe, D’antoninobecourt Jeanclaude, Bigot Jeanyves

Hypogenic caves develop by recharge from below, not directly influenced by seepage from the over lying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint of tenhiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Cara man, Vallondu Salut). Often, thermal in fluences only occur as point thermal infeeders into epigenic caves (Mescla, Estra mar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese de posits. The Giant Phreatic Shafts locate along regional active faul tlines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to –70 m. Such a hyperkars tification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (-392 m). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidicores. Iron deposits as massive bodies (Lagnes) or ontomicrobial media (Ibous sières, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppres ses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sé bastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, pro ducing a 3D maze cave in a stair case pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop headward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base-level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplace ment of minerals and hydrocarbons.


Subglacial Maze Origin in Low-Dip Marble Stripe Karst: Examples from Norway, 2011, Skoglund R. O. , Lauritzen S. E.

Maze caves or network caves are enigmatic in their evolution, as they form flow nets rather than more efficient, direct point-to-point flow routes. Network caves are often characterized by uniform passage dimensions in several directions, which indicates simultaneous dissolution of most available fractures. Nonshauggrotta in Gildeska° l, northern Norway, is formed in low-dip marble strata and situated as a relict in a topographical and hydrological hanging position, thus lacking a modern drainage area. The cave displays a reticulate network geometry dictated by two orthogonal fracture sets. Passage morphology and paleocurrent marks in the cave walls (scallops) demonstrate that the cave evolved under water-filled conditions (phreatic) and that the relatively slow flow was directed uphill towards the confining aquiclude and the cliff face. In that sense, it has some resemblance to hypogene caves. However, we propose that the cave is a result of ice-contact speleogenesis, as it developed in the lee side of the Nonshaugen ridge under topographically directed glacier flow and seems independent of the otherwise variable flow regimes characteristic of the glacial environment.


Recent developments on morphometric analysis of karst caves, 2011, Piccini, Leonardo

Nowadays, the use of computers and the digital techniques for survey processing easily allows to carry out morphometric analysis of caves and karst systems. Morphometric indices have been proposed by many authors in order to describe the genetic features of some particular types of caves, such as coastal ones, maze caves or isolated voids. Large cave systems can be analyzed through the reconstruction of a 3D model. The digital model can be used to evaluate the role of the structural setting or the evolution stages through the recognizing of particular levels where epi-phreatic passages are more developed. These levels are particularly significant when a lithological or structural control can be excluded. Some morphometric indices, obtained by the ratios of simple dimension parameters of caves, allow the statistical analysis of large databases, collected in the regional speleological inventories, in the attempt to recognize different geomorphic populations of caves. Further studies and a greater number of analysis could allow to use these morphometric indices to distinguish genetic categories of caves and to get a useful instrument for the study of the evolution of karst areas.


Recent developments on morphometric analysis of karst caves, 2011, Piccini L.

Nowadays, the use of computers and the digital techniques for survey processing easily allows to carry out morphometric analysis of caves and karst systems. Morphometric indices have been proposed by many authors in order to describe the genetic features of some particular types of caves, such as coastal ones, maze caves or isolated voids. Large cave systems can be analyzed through the reconstruction of a 3D model. The digital model can be used to evaluate the role of the structural setting or the evolution stages through the recognizing of particular levels where epi-phreatic passages are more developed. These levels are particularly significant when a lithological or structural control can be excluded. Some morphometric indices, obtained by the ratios of simple dimension parameters of caves, allow the statistical analysis of large databases, collected in the regional speleological inventories, in the attempt to recognize different geomorphic populations of caves. Further studies and a greater number of analysis could allow to use these morphometric indices to distinguish genetic categories of caves and to get a useful instrument for the study of the evolution of karst areas.


Distinction between epigenic and hypogenic maze caves, 2011, Palmer, Arthur N.

Certain caves formed by dissolution of bedrock have maze patterns composed of closed loops in which many intersecting fractures or pores have enlarged simultaneously. Their origin can be epigenic (by shallow circulation of meteoric groundwater) or hypogenic (by rising groundwater or production of deep-seated solutional aggressiveness). Epigenic mazes form by diffuse infiltration through a permeable insoluble caprock or by floodwater supplied by sinking streams. Most hypogenic caves involve deep sources of aggressiveness. Transverse hypogenic cave origin is a recently proposed concept in which groundwater of mainly meteoric origin rises across strata in the distal portions of large flow systems, to form mazes in soluble rock sandwiched between permeable but insoluble strata. The distinction between maze types is debated and is usually based on examination of diagnostic cave features and relation of caves to their regional setting. In this paper, the principles of mass transfer are applied to clarify the limits of each model, to show how cave origin is related to groundwater discharge, dissolution rate, and time. The results show that diffuse infiltration and floodwater can each form maze caves at geologically feasible rates (typically within 500 ka). Transverse hypogenic mazes in limestone, to enlarge significantly within 1 Ma, require an unusually high permeability of the non-carbonate beds (generally ≥ 10−4 cm/s), large discharge, and calcite saturation no greater than 90%, which is rare in deep diffuse flow in sedimentary rocks. Deep sources of aggressiveness are usually required. The origin of caves by transverse hypogenic flow is much more favorable in evaporite rocks than in carbonate rocks.


Ogof Draenen: speleogenesis of a hydrological see-saw from the karst of South Wales, 2011, Farrant Andrew R. , Simms Michael J.

 Discovered in 1994, Ogof Draenen is currently the longest cave in Britain and among the thirty longest caves in the World, with a surveyed length in excess of 70km. Like other great caves, Ogof Draenen has had a complex multiphase history. This interpretation of the genesis of the cave is based on speleo-morphological observations throughout the system. Evidence of at least four phases of cave development can be identified, associated with major shifts in resurgence location and changes in flow direction of up to 180°. Joints have had a dominant influence on passage genesis. In particular joints have facilitated the development of maze networks and remarkably shallow horizontal phreatic conduits. The amplitude of these conduits is much shallower than predicted by models based on flow path length and stratal dip. Here, we suggest that presence of laterally extensive open joints, orientated perpendicular to the regional neo-tectonic principal stress field, determines the depth of flow in the aquifer, rather than fissure frequency per se as suggested in Ford’s Four State Model. We argue that the rate of base-level lowering, coupled with the depth of karstification determines whether a cave responds by phreatic capture or vadose incision. Maze cave networks within Ogof Draenen were probably initiated by bedrock-hosted sulphide oxidation and sulphuric acid speleogenesis.

(Note: Welsh terms used in this paper: Ogof = Cave; Afon = River; Cwm = Valley; Mynydd = Mountain).


Ukraine Giant Gypsum Caves, 2012, Klimchouk, Alexander

The extensive gypsum karst in the Western Ukraine is renowned for its giant maze caves. It is internationally important as a model example of hypogene artesian speleogenesis. The region contains the five longest gypsum caves in the world, accounting for well over half of the total known length of gypsum caves on Earth. This article describes the geological and hydrogeological conditions of these caves, their patterns, morphology, and origin


Jewel Cave, South Dakota, 2012, Wiles, Mike

Jewel Cave was first entered in 1900 and in 1908 became the first National Monument established for the protection of a cave. Over 153 miles have been mapped to date, making it the second longest cave in the world. The cave has a prominent barometric wind, which provides evidence that most of the passages remain undiscovered. Recent geological mapping has documented compelling relationships between the cave and the present-day geologic contacts and structure. It found that there is no mappable paleokarst topography within the Jewel Cave quadrangle, and infers that cave “paleofill” is really a more recent “neofill.” These observations suggest that the cave was formed concurrently with the modern landscape and present-day geologic contacts and structure. A working hypothesis ties the key observations to a plausible scenario to encourage reconsideration of the timing and mechanisms responsible for the origin of the cave.


Speleogenesis, Telogenetic, 2012, Gabrovek, Franci

Speleogenesis refers to the processes by which caves are formed. Telogenetic speleogenesis is the formation of caves in compacted, fractured, soluble rocks such as limestone, dolomite, and gypsum by circulating meteoric water. The kinetics of the known chemical reactions can be used to construct models that describe cave development as a function of time and the chemical and geological properties of the system. The common cave patterns of branchworks and mazes can be accounted for by hydraulic gradients and recharge rates.


Ukraine Giant Gypsum Caves, 2012, Klimchouk, Alexander

The extensive gypsum karst in the Western Ukraine is renowned for its giant maze caves. It is internationally important as a model example of hypogene artesian speleogenesis. The region contains the five longest gypsum caves in the world, accounting for well over half of the total known length of gypsum caves on Earth. This article describes the geological and hydrogeological conditions of these caves, their patterns, morphology, and origin.


Preliminary notes on the Cavernicolous Arthropod Fauna of Judbarra / Gregory Karst Area, northern Australia, 2012, Moulds Timothy, Bannink Peter

The Judbarra / Gregory Karst Region is situated in the Judbarra / Gregory National Park, west of Timber Creek, Northern Territory. Several large joint controlled maze caves occur within the area, developed within and below a prominent dolomitic layer (the Supplejack Member). The caves are predominantly shallow in depth (< 15 m below the surface) but are occasionally developed deeper as multi-level systems, reaching the aquifer. Two biological surveys from the largest caves have revealed 56 morphospecies from 43 families, 19 orders, and 7 classes. All collecting was undertaken in the northern dry season (April to September) and consisted predominantly of opportunistic collecting. The diversity of invertebrates collected from the Judbarra / Gregory karst comprised non-troglobionts (48 species, 86%), troglobionts (5 species, 9%), stygobionts (2 species, 3%), and trogloxenes (1 species, 2%). Five of the species are considered to be potential troglobionts, and two potential stygobionts as indicated by troglomorphisms such as elongate appendages and reduced or absent eyes. The five troglobiont species are an isopod (Platyarthridae: Trichorhina sp.), a scorpion (Buthidae: Lychas? sp. nov.), a pseudoscorpion (Geogarypidae: Geogarypus sp. nov.), a millipede (Polydesmida: sp.), and a planthopper (Meenoplidae: sp.). The two stygobiont species are a hydrobiid snail (Hydrobiidae: sp.), and an amphipod (Amphipoda: sp.). The troglobiont scorpion is only the second collected from a cave environment from continental Australia.


Epikarstic Maze Cave Development: Bullita Cave System, Judbarra / Gregory Karst, Tropical Australia, 2012, Martini Jacques E. J. , Grimes Ken G.

 In the monsoon tropics of northern Australia, Bullita Cave is the largest (120 km) of a group of extensive, horizontal, joint-controlled, dense network maze caves which are epikarst systems lying at shallow depth beneath a welldeveloped karrenfield. The Judbarra / Gregory Karst and its caves are restricted to the outcrop belt of a thin bed of sub-horizontal, thinly interbedded dolostone and calcitic limestone – the Supplejack Dolostone Member of the Proterozoic Skull Creek Formation. Karst is further restricted to those parts of the Supplejack that have escaped a secondary dolomitisation event. The karrenfield and underlying cave system are intimately related and have developed in step as the Supplejack surface was exposed by slope retreat. Both show a lateral zonation of development grading from youth to old age. Small cave passages originate under the recently exposed surface, and the older passages at the trailing edge become unroofed or destroyed by ceiling breakdown as the, by then deeply-incised, karrenfield breaks up into isolated ruiniform blocks and pinnacles and eventually a low structural pavement. Vertical development of the cave has been generally restricted to the epikarst zone by a 3 m bed of impermeable and incompetent shale beneath the Supplejack which first perched the watertable, forming incipient phreatic passages above it, and later was eroded by vadose flow to form an extensive horizontal system of passages 10-20 m below the karren surface. Some lower cave levels in underlying dolostone occur adjacent to recently incised surface gorges. Speleogenesis is also influenced by the rapid, diffuse, vertical inflow of storm water through the karrenfield, and by ponding of the still-aggressive water within the cave during the wet season – dammed up by "levees" of sediment and rubble that accumulate beneath the degraded trailing edge of the karrenfield. The soil, and much biological activity, is not at the bare karren surface, but down on the cave floors, which aids epikarstic solution at depth rather than on the surface. While earlier hypogenic, or at least confined, speleogenic activity is possible in the region, there is no evidence of this having contributed to the known maze cave systems. The age of the cave system appears to be no older than Pleistocene. Details of the speleogenetic process, its age, the distinctive nature of the cave systems and comparisons with other areas in the world are discussed.


Surface Karst Features of the Judbarra / Gregory National Park, Northern Territory, Australia, 2012, Grimes, Ken G.

In the monsoon tropics of northern Australia, a strongly-developed karrenfield is intimately associated with extensive underlying epikarstic maze caves. The caves, and the mesokarren and ruiniform megakarren are mainly restricted to a flat-lying, 20 m thick, unit of interbedded limestone and dolomite. However, microkarren are mainly found on the flaggy limestones of the overlying unit. These are the best-developed microkarren in Australia, and possibly worldwide. A retreating cover results in a zonation of the main karrenfield from a mildly-dissected youthful stage at the leading edge through to old age and disintegration into isolated blocks and pinnacles at the trailing edge. Cave undermining has formed collapse dolines and broader subsidence areas within the karrenfield. Tufa deposits occur in major valleys crossing the karrenfield. The karrenfield shows some similarities to other tropical karren, including tsingy and stone forests (shilin), but in this area there has not been any initial stage of subcutaneous preparation


Results 46 to 60 of 76
You probably didn't submit anything to search for