Search in KarstBase
![]() |
![]() |
An extensive palaeokarst porosity system, developed during a pronounced mid-Paleocene third-order lowstand of sea level, is hosted in Danian limestones of the Urbasa–Andia plateau in north Spain. These limestones were deposited on a 40–50 km wide rimmed shelf with a margin characterised by coralgal buildups and coarse-grained bioclastic accumulations. The sea-level fall that caused karstification was of approximately 80–90 m magnitude and 2.5 Ma in duration. During the exposure, a 450 m wide belt of sub-vertical margin-parallel fractures developed a few hundred metres inboard of the shelf edge. Most fractures are 90–100 m deep, average 1 m in width, and are associated with large erosional features created by collapse of the reefal margin. Inland from the fracture belt, three superimposed laterally extensive cave systems were formed over a distance of 3.5 km perpendicular to shelf edge, at depths ranging from 8–31 m below the exposure surface. The palaeocaves range from 0.3 to 2 m in height, average 1.5 m high. They show no evidence of meteoric processes and are filled with Thanetian grainstones rich in reworked Microcodium, a lithology that also occurs infilling the fractures. The caves are interpreted as due to active corrosion at the saline water–fresh-water mixing zone. Caves are missing from the shelf edge zone probably because the fractures beheaded the meteoroic lens preventing mixing-zone cave development beyond the fracture zone. Towards the platform interior, each cave system passes into a prominent horizon, averaging 1 m in thickness, of spongy porosity with crystal silt infills and red Fe-oxide coatings. The spongy horizons can be traced for 5.5 km inboard from the cave zone and occur at 10.5 m, 25 m and 32 m below the exposure surface. In the inland zone, two additional horizons with the same spongy dissolution have been recognised at depths of 50 m and 95 m. All are analogous to Swiss-cheese mixing-zone corrosion in modern carbonate aquifers and probably owe their origins to microbiallymediated dissolution effects associated with a zone of reduced circulation in marine phreatic water. In the most landward sections a number of collapse breccia zones are identified, but their origin is unclear. The palaeokarst system as a whole formed during the pulsed rise that followed the initial sea-level drop, with the three main cave-spongy zones representing three successive sea-level stillstands, recorded by stacked parasequences infilling large erosional scallops along the shelf margin. The geometry of the palaeo-mixing zones indicates a low discharge system, and together with the lack of meteoric karstic features favours a semi-arid to arid climatic regime, which is further supported by extensive calcrete-bearing palaeosols occurring in coeval continental deposits.
An extensive palaeokarst porosity system, developed during a pronounced mid-Paleocene third-order lowstand of sea level, is hosted in Danian limestones of the Urbasa–Andia plateau in north Spain. These limestones were deposited on a 40–50 km wide rimmed shelf with a margin characterised by coralgal buildups and coarse-grained bioclastic accumulations. The sea-level fall that caused karstification was of approximately 80–90 m magnitude and 2.5 Ma in duration. During the exposure, a 450 m wide belt of sub-vertical margin-parallel fractures developed a few hundred metres inboard of the shelf edge. Most fractures are 90–100 m deep, average 1 m in width, and are associated with large erosional features created by collapse of the reefal margin. Inland from the fracture belt, three superimposed laterally extensive cave systems were formed over a distance of 3.5 km perpendicular to shelf edge, at depths ranging from 8–31 m below the exposure surface. The palaeocaves range from 0.3 to 2 m in height, average 1.5 m high. They show no evidence of meteoric processes and are filled with Thanetian grainstones rich in reworked Microcodium, a lithology that also occurs infilling the fractures. The caves are interpreted as due to active corrosion at the saline water–fresh-water mixing zone. Caves are missing from the shelf edge zone probably because the fractures beheaded the meteoroic lens preventing mixing-zone cave development beyond the fracture zone. Towards the platform interior, each cave system passes into a prominent horizon, averaging 1 m in thickness, of spongy porosity with crystal silt infills and red Fe-oxide coatings. The spongy horizons can be traced for 5.5 km inboard from the cave zone and occur at 10.5 m, 25 m and 32 m below the exposure surface. In the inland zone, two additional horizons with the same spongy dissolution have been recognised at depths of 50 m and 95 m. All are analogous to Swiss-cheese mixing-zone corrosion in modern carbonate aquifers and probably owe their origins to microbially mediated dissolution effects associated with a zone of reduced circulation in marine phreatic water. In the most landward sections a number of collapse breccia zones are identified, but their origin is unclear. The palaeokarst system as a whole formed during the pulsed rise that followed the initial sea-level drop, with the three main cave-spongy zones representing three successive sea-level stillstands, recorded by stacked parasequences infilling large erosional scallops along the shelf margin. The geometry of the palaeo mixing zones indicates a low discharge system, and together with the lack of meteoric karstic features favours a semi-arid to arid climatic regime, which is further supported by extensive calcrete-bearing palaeosols occurring in coeval continental deposits.
The south Adriatic shelf offshore of the predominently carbonate Apulian coast is characterized by a peculiar rough topography interpreted as relic karst formed at a time of lower sea level. The study area covers a surface of about 220 km2, with depths ranging from 50 to 105 m. The most relevant and diagnostic features are circular depressions a few tens to 150 m in diameter and 0.50 to 20 m deep thought to be dolines at various stages of evolution. The major doline, Oyster Pit, has its top at about 50 m water depth and is 20 m deep. It is partly filled with sediments redeposited by episodic mass failure from the doline’s flank. Bedrock samples from the study area document that Plio-Pleistocene calcarenites, tentatively correlated with the Calcarenite di Gravina Fm, are a prime candidate for the carbonate rocks involved in the karstification, although the presence of other units, such as the Peschici or Maiolica Fms, is not excluded. The area containing this subaerial karst landscape was submerged about 12,500 years ago as a result of the postglacial transgression over the continental shelf.
Caves are sheltered environments that can preserve unique evidence of climatic and tectonic events. A variety of cave deposits, primarily calcite shelfstone formed along pool margins, delineate formerly level surfaces. In tectonically active areas, the orientation of these surfaces can be measured with respect to horizontal to determine the magnitude of local or regional tilt. In many cases, these deposits can also be dated by a variety of geochronologic methods, such as U–Th and 14C, allowing for calculation of tilting rates. This chapter reviews previous research using cave sediments as geologic tiltmeters, describes various approaches to the problem, and discusses potential future applications
In the south of France, the Cosquer Cave with its famous prehistoric paintings is located in a karstic area located between Marseilles and Cassis. This emerged and submerged karst is typical ofkarstic coasts submerged after the Late-Glacial Maximum. Ail the forms observed in the hinterland can be observed directly by scuba divers and indirectly on bathymetrie charts: lapiaz, karstic archs, sinkholes, uvala and polje. The emerged and submerged landscapes are mainly the heritage of specifie lithological conditions (Urgonian limestones) and tectonic conditions (vertical faulting network leading to coastal eollapse in theMediterranean Sea). üther elements of this submerged Iandscape are given by the traces of the last sea level rise (palaeo-shorelines and erosion platforms and notehes). AIl the area between Marseilles and La Ciotat is now established as the Calanques National Park, inc1uding the Cosquer Cave with its upper Palaeolithic rock art paintings, which adds an international archaeological interest to this exceptional natural area
In the south of France, the Cosquer Cave with its famous prehistoric paintings is located in a karstic area located between Marseilles and Cassis. This emerged and submerged karst is typical of karstic coasts submerged after the Late-Glacial Maximum. Ail the forms observed in the hinterland can be observed directly by scuba divers and indirectly on bathymetrie charts: lapiaz, karstic archs, sinkholes, uvala and polje. The emerged and submerged landscapes are mainly the heritage of specifie lithological conditions (Urgonian limestones) and tectonic conditions (vertical faulting network leading to coastal eollapse in theMediterranean Sea). üther elements of this submerged Iandscape are given by the traces of the last sea level rise (palaeo-shorelines and erosion platforms and notehes). AIl the area between Marseilles and La Ciotat is now established as the Calanques National Park, inc1uding the Cosquer Cave with its upper Palaeolithic rock art paintings, which adds an international archaeological interest to this exceptional natural area.
![]() |
![]() |