Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That aquifer system is a body of permeable and poorly permeable material that functions regionally as a water-yielding unit; it comprises two or more permeable beds separated at least locally by confining beds that impede ground-water movement but do not greatly affect the regional hydraulic continuity of the system; includes both saturated and unsaturated parts of permeable material [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for karst aquifer (Keyword) returned 656 results for the whole karstbase:
Showing 631 to 645 of 656
Carbon fluxes in Karst aquifers: Sources, sinks, and the effect of storm flow, 2013, White William B.

An effective carbon loading can be calculated from measured alkalinity and pH of karst waters. The carbon loading is independent of the degree of saturation of the water and does not depend on the water being in equilibrium with the carbonate wall rock. A substantial data base of spring water analyses accumulated by students over the past 40 years has been used to probe the CO2 generation, transport, and storage in a variety of drainage basins that feed karst springs. Carbon loading in the water exiting karst drainage basins depends on the rate of CO2 generation in the soils of the catchment areas and on the partitioning between CO2 dissolved in infiltration water and CO2 lost by diffusion upward to the atmosphere. For any given drainage basin there are also influences due to vegetative cover, soil type, and the fraction of the water provided by sinking stream recharge. Losses of CO2 back to the atmosphere occur by speleothem deposition in air-filled caves, by degassing of CO2 in spring runs, and by tufa deposition in spring runs. There are seasonal cycles of CO2 generation that relate growing season and contrasts in winter/summer rates of CO2 generation. Overall, it appears that karst aquifers are a net, but leaky, sink for atmospheric CO2


A framework for assessing the role of karst conduit morphology, hydrology, and evolution in the transport and storage of carbon and associated sediments, 2013, Veni George

Karst aquifers and conduits form by dissolution of carbonate minerals and the slow release of inorganic carbon to the surface environment. As conduits evolve in size, morphology, and position within the aquifer, their function and capacity change relative to the storage and transport of inorganic and organic carbon as sediment. Conduits serve mostly as transport mechanisms in relation to sediments. quantified data are sparse, but for conduits to function effectively there must be at least equilibrium in the amount of sediment entering and exiting the aquifer. If sediment discharge exceeds input, little sediment will remain underground. when natural declines in base level cease removing sediments and only deposit calcite speleothems, these materials are stored until the rock mass is denuded. while sediment storage is mostly transient in hydrologically active conduits, relative differences occur. Aquifers with conduits developed at multiple levels or as floodwater mazes store proportionately greater volumes of sediment. Hypogenic systems should store greater volumes of sediment than epigenic aquifers because they mostly discharge a dissolved load as opposed to both dissolved and suspended clastic loads. However, some hypogenic aquifers are diffusely recharged and receive and store little sediment from the surface. The global volume of sediment and organic carbon stored in karst aquifers is estimated in this study to be on the order of 2x104 km3 and 2x102 km3, respectively. The amount of organic carbon stored in paleokarst is not estimated, but available data indicate it is substantially greater than that stored in modern karst aquifers. Development of such data may suggest that paleokarst petroleum reservoirs might serve as efficient carbon sinks for global carbon sequestration. Hydrocarbon-depleted paleokarst reservoirs should provide substantially more storage per injection well than sequestration in non-paleokarstic rocks.


Organic matter flux in the epikarst of the Dorvan karst, France, 2013, Simon, Kevin S.

Availability of organic matter plays an important role in karst ecosystems. Somewhat surprisingly, study of the composition and distribution of organic matter in karst aquifers is rare. The most comprehensive study or organic matter flux to date is a two year continuous monitoring of detritus and animal flux in epikarst drip waters and an epikarst-fed cave stream in the Dorvan karst, France. Analysis of those data reveals high temporal variation in detritus and animal flux in both habitats, but little evidence of seasonality in flux. water flux explained 30-69% of the variation in animal flux in both habitats and detritus flux in the epikarst seepage water. Detritus flux in the cave stream was better explained by peak monthly discharge. Lack of coherence between organic matter flux in epikarst seepage and the epikarst stream suggests organic matter transport is governed by differing factors in the two habitats. Overall, much of the particulate organic matter flux in the epikarst occurs as living animals suggesting a dominant role of ecological processes in organic matter transport.


Environmental controls on organic matter production and transport across surface-subsurface and geochemical boundaries in the Edwards aquifer, Texas, USA, 2013, Hutchins Benjamin T. , Schwartz Benjamin F. , Engel Annette S.

Karst aquifer phreatic zones are energy limited habitats supported by organic matter (OM) flow across physical and geochemical boundaries. Photosynthetic OM enters the Edwards Aquifer of Central Texas via streams sinking along its northeastern border. The southeastern boundary is marked by a rapid transition between oxygenated freshwaters and anoxic saline waters where OM is likely produced by chemolithoautotrophic microbes. Spatial and temporal heterogeneity in OM composition at these boundaries was investigated using isotopic and geochemical analyses. δ13C values for stream fine particulate OM (FPOM) (−33.34‰ to −11.47‰) decreased during regional drought between fall 2010 and spring 2012 (p<0.001), and were positively related to FPOM C:N ratios (r2 =0.47, p<0.001), possibly due to an increasing contribution of periphyton. Along the freshwater-saline water interface (FwSwI), δ 13CFPOM values (−7.23‰ to −58.18‰) correlated to δ13C values for dissolved inorganic carbon (δ13C DIC) (−0.55‰ to −7.91‰) (r2 =0.33, p=0.005) and were depleted relative to δ13C DIC values by 28.44‰, similar to fractionation values attributed to chemolithoautotrophic carbon fixation pathways using DIC as the substrate. δ13CFPOM values also became enriched through time (p<0.001), and δ13C DIC values (r2 =0.43, p<0.001) and δ13CFPOM values (r2 =0.35, p=0.004) at FwSwI sites increased with distance along the southwest-northeast flowpath of the aquifer. Spatial variability in FwSwI δ13C DIC values is likely due to variable sources of acidity driving carbonate dissolution, and the temporal relationship is explained by changes to recharge and aquifer level that affected transport of chemolithoautotrophic OM across the FwSwI.


Variability of groundwater flow and transport processes in karst under different hydrologic conditions, 2013, Ravbar, Nataša

Significance of hydrological variability in karst is presented, which also discusses factors inducing such variability and consequences it may cause. Groundwater flow in karst aquifers is often characterized by strong variability of flow dynamics in response to different hydrologic conditions within a short time period. Consequently, water table fluctuations are often in the order of tens of meters, differences in flow velocities between low- and high-flow conditions can reach ten or even more times. In dependence to respective hydrologic conditions groundwater flow also results in variations of flow directions, and thus in contribution of different parts of the aquifer to a particular spring. The described hydrological variability has many implications for contaminant transport, groundwater availability and vulnerability. Groundwater level rising reduces thickness of the unsaturated zone and decreases protectiveness of the overlying layers. Higher water flow velocities reduce underground retention. Due to more turbulent flow, transport and remobilization of solute and insoluble matter is more effective. During high-flow conditions there is usually more surface flow and hence more concentrated infiltration underground. Particularly in karst systems that show very high hydrologic variability, this should be considered to correctly characterize, understand or predict the aquifers’ hydrological behaviour and to prepare proper protection strategies.


Physical Structure of the Epikarst, 2013, Jones, William K.

Epikarst is a weathered zone of enhanced porosity on or near the surface or at the soil/bedrock contact of many karst landscapes. The epikarst is essentially the upper boundary of a karst system but is also a reaction chamber where many organics accumulate and react with the percolating water. The epikarst stores and directs percolating recharge waters to the underlying karst aquifers. Epikarst permeability decreases with depth below the surface. The epikarst may function as a perched aquifer with a saturated zone that transmits water laterally for some distance until it drains slowly through fractures or rapidly at shaft drains or dolines. Stress-release and physical weathering as well as chemical dissolution play a role in epikarst development. Epikarst may be found on freshly exposed carbonates although epikarst that develops below a soil cover should form at a faster rate due to increased carbon dioxide produced by vegetation. The accumulation of soil within the fractures may create plugs that retard the downward movement of percolating water and creates a reservoir rich in organic material. The thickness of the epikarst zone typically ranges from a few meters to 15 meters, but vertical weathering of joints may be much deeper and lead to a “stone forest” type of landscape. Some dolines are hydrologically connected directly to the epikarst while other dolines may drain more directly to the deeper conduit aquifer and represent a “hole” in the epikarst. water stored in the epikarst may be lost to evapotranspiration, move rapidly down vertical shafts or larger joints, or drain out slowly through the soil infillings and small fractures. Much of the water pushed from the epikarst during storms is older water from storage that is displaced by the new event water.


Flow characterization in the Santee Cave system in the Chapel Branch Creek watershed, upper coastal plain of South Carolina, USA., 2013, Edwards A. E. , Amatya D. M. , Williams T. M. , Hitchcock D. R. , James A. L.

Karst watersheds possess both diffuse and conduit flow and varying degrees of connectivity between surface and groundwater over spatial scales that result in complex hydrology and contaminant transport processes. The flow regime and surface-groundwater connection must be properly identified and characterized to improve management in karst watersheds with impaired water bodies, such as the Chapel Branch Creek (CBC), South Carolina watershed, which has a long-term sampling station presently listed on an EPA 303(d) list for phosphorous, pH, and nitrogen. Water from the carbonate limestone aquifer of the Santee Cave system and spring seeps in the CBC watershed were monitored to characterize dominant flow type and surface-groundwater connection by measuring dissolved calcium and magnesium, total suspended solids, volatile suspended solids, alkalinity, pH, specific conductance, and stable isotopes (d18O, d2H). These measurements indicated that the conduit flow to Santee Cave spring was recharged predominantly from diffuse flow, with a slow response of surface water infiltration to the conduit. Qualitative dye traces and stage elevation at Santee Cave spring and the adjacent Lake Marion (equal to the elevation of the flooded portion of CBC) also indicated a relation between fluctuating base level of the CBC reservoir-like embayment and elevation of the Santee Limestone karst aquifer at the spring. Methods described herein to characterize the flow type and surface-groundwater connection in the Santee Cave system can be applied not only to watershed management in the Chapel Branch Creek watershed, but also to the greater region where this carbonate limestone aquifer exists. 


Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method, 2013, Delbarta Célestine, Valdesd Danièle, Barbecotg Florent, Tognellia Antoine, Richona Patrick, Couchouxh Laurent

We study the temporal variability of water transfer through the infiltration zone of a karst aquifer by estimating the impulse response of the system using cross-correlogram analyses between rainfall and piezometric level time series. We apply a sliding-window cross-correlation method, which calculates cross-correlograms on partially superposed short time series windows. We apply this method for rainfall and piezometric level time series at six boreholes in a fractured karstic aquifer located in Burgundy, France. Based on cross-correlogram functions, we obtain a time series of response time. At most of the boreholes, the cross-correlation functions change over time, and the response times vary seasonally, being shorter during the summer. This unusual structure can be partly explained by the seasonal variability in rainfall intensity, which is higher during the summer (May–September), inducing the seasonal behaviour of the epikarst. During the summer, when rainfall intensity is higher, the epikarst is more easily and quickly saturated. This induces an increase in lateral water transfer within the epikarst and an increase in concentrated fast flows. We also show that the response time seems to tend towards a limit which represents the maximum saturation of the epikarst.


ACTIVE HYPOGENE SPELEOGENESIS IN A REGIONAL KARST AQUIFER: AYYALON CAVE, ISRAEL, 2014, Naaman I. , Dimentman C. , Frumkin A. ,

HELIUM ISOTOPES AS INDICATOR OF CURRENT HYPOGENIC KARST DEVELOPMENT IN TAURIDS KARST REGION, TURKEY, 2014, Ozyurt N. N. , Bayari C. S.

Hypogenic karst development by means of the aggressiveness of hydrothermal fluids driven and fed by mantle heat and mass flux is a known phenomenon. However, in cases when hydrothermal fluid cools down upon thermal conduction in the near-surface environment and is diluted by near-surface cool groundwater, evidences of this phenomenon may be erased completely. Recent data on the isotopes of helium dissolved in cool karst groundwater samples collected from three different karst aquifers in Turkey suggest an apparent mass flux from mantle, as well as from the crust. In the cases considered, helium content from the mantle increases with the increasing age of groundwater. All cases are located nearby the suture zones which may be easing the upward heat and mass flux. Despite sampling difficulties and high analysis costs, helium isotopes dissolved in cool karst groundwater seem to be useful tool to detect the current hypogenesis at the depths of karst aquifers


The Recession of Spring Hydrographs, Focused on Karst Aquifers, 2014, Fiorillo, F.

This study constitutes a review of spring hydrograph recession analysis, and it is focused on karst aquifers. The different literature models have been separated into empirical and physically-based models; in the last ones, only analytical models have been considered, as they provide the discharge equation during recession. Under constant geometrical and hydraulic aquifer characteristics, it has been found that the “exponential form” appears to be the most recurrent theoretical type, at least during the long-term flow recession. During this stage, any deviation from the exponential form, may suggest hydraulic anisotropy of actual aquifers, as well as aquifer geometry has a fundamental role in controlling the shape of spring hydrographs. The hydrodynamics of karst aquifer under recession has been described, associating any segment of the hydrograph to a specific hydrologic condition of the aquifer, and also to a specific physical law which control the water flow.


Vadose CO2 gas drives dissolution at water tables in eogenetic karst aquifers more than mixing dissolution, 2014, Gulley J. , Martin J. , Moore P.

Most models of cave formation in limestone that remains near its depositional environment and has not been deeply buried (i.e. eogenetic limestone) invoke dissolution from mixing of waters that have different ionic strengths or have equilibrated with calcite at different pCO2 values. In eogenetic karst aquifers lacking saline water, mixing of vadose and phreatic waters is thought to form caves. We show here calcite dissolution in a cave in eogenetic limestone occurred due to increases in vadose CO2 gas concentrations and subsequent dissolution of CO2 into groundwater, not by mixing dissolution. We collected high-resolution time series measurements (1 year) of specific conductivity (SpC), temperature, meteorological data, and synoptic water chemical composition from a water table cave in central Florida (Briar Cave).We found SpC, pCO2 and calcite undersaturation increased through late summer, when Briar Cave experienced little ventilation by outside air, and decreased through winter, when increased ventilation lowered cave CO2(g) concentrations.We hypothesize dissolution occurred when water flowed from aquifer regions with low pCO2 into the cave, which had elevated pCO2. Elevated pCO2 would be promoted by fractures connecting the soil to the water table. Simple geochemical models demonstrate that changes in pCO2 of less than 1% along flow paths are an order of magnitude more efficient at dissolving limestone thanmixing of vadose and phreatic water.We conclude that spatially or temporally variable vadose CO2(g) concentrations are responsible for cave formation becausemixing is too slow to generate observed cave sizes in the time available for formation. While this study emphasized dissolution, gas exchange between the atmosphere and karst aquifer vadose zones that is facilitated by conduits likely exerts important controls on other geochemical processes in limestone critical zones by transporting oxygen deep into vadose zones, creating redox boundaries that would not exist in the absence of caves.


Hydrological role of karst in the Chalk aquifer of Upper Normandy, France, 2014, Janyani S. El, Dupont J. P. , Massei N. , Slimani S. , Dörfliger N.

The role of karst on large-scale groundwater flow is defined for the Chalk aquifer of Upper Normandy (western Paris Basin), France. In the regional context, chalk plateaus occupy the greater part of watersheds and are the main sites of groundwater recharge. Previous studies focused on karstic output systems in the valleys and less on water-level variations in the recharge zones upstream. This study assesses the relevant hydrogeological processes using time-series data (boreholes and springs) recorded along a down-gradient hydrologeological cross-section in two selected watersheds. These hydrological data are interpreted in the framework of previous descriptions of the morphological organization of the study area’s karst network. The results highlight the hydrological role of (1) the input karst (vertical conduits) which drains recharging water, (2) the output karst (sub-horizontal conduits widely developed in the vicinity of valleys in the surface watersheds) which drains the output flows, and (3) the connections between these two (input and output) networks, which control the upstream water levels and allow quick transfer to springs, particularly after strong rainfall events. A conceptual model of the hydrological functioning of this covered karst aquifer is established, which should serve for the structuring and parameterization of a numerical model


Identification of the Exchange Coefficient from Indirect Data for a Coupled Continuum Pipe-Flow Model, 2014, Wu X. , Kugler Ph. , Lu Sh.

Calibration and identification of the exchange effect between the karst aquifers and the underlying conduit network are important issues in order to gain a better understanding of these hydraulic systems. Based on a coupled continuum pipe-flow (CCPF for short) model describing flows in karst aquifers, this paper is devoted to the identification of an exchange rate function, which models the hydraulic interaction between the fissured volume (matrix) and the conduit, from the Neumann boundary data, i.e., matrix/conduit seepage velocity. The authors formulate this parameter identification problem as a nonlinear operator equation and prove the compactness of the forward mapping. The stable approximate solution is obtained by two classic iterative regularization methods, namely, the Landweber iteration and Levenberg-Marquardt method. Numerical examples on noisefree and noisy data shed light on the appropriateness of the proposed approaches


Deep conduit flow in karst aquifers revisited, 2014, Kaufmann Georg, Gabrovšek Franci, Romanov Douchko

Caves formed in soluble rocks such as limestone, anhydrite, or gypsum are efficient drainage paths for water moving through the aquifer from the surface of the host rock towards a resurgence. The formation of caves is controlled by the physical solution through dissociation of the host rock by water or by the chemical solution through reactions of the host rock with water enriched with carbon dioxide. Caves as large underground voids are simply the end member of secondary porosity and conductivity characterizing the aquifer.

Caves and their relation to a present or past base level are found both close to a past or present water table (water-table caves) and extending far below a past or present water table (bathy-phreatic caves). One explanation for this different speleogenetic evolution is the structural control: Fractures and bedding partings are preferentially enlarged around more prominent faults, thus the fracture density in the host rock controls the speleogenetic evolution. This widely accepted explanation [e.g. Ford and Ewers, 1978] can be extended by adding other controls, e.g. a hydraulic control: As temperature generally increases with depth, density and viscosity of water change, and particularly the reduction of viscosity due to the increase in temperature enhances flow. This hypothesis was proposed by Worthington [2001, 2004] as a major controlling factor for the evolution of deep-bathyphreatic caves.

We compare the efficiency of structural and hydraulic control on the evolution of a cave passage by numerical means, adding a third control, the chemical control to address the change in solubility of the circulating water with depth. Our results show that the increase in flow through deep bathy-phreatic passages due to the decrease in viscosity is by far outweighted by effects such as the decrease in fracture width with depth due to lithostatic stress and the decrease in solubility with depth. Hence, the existence of deep bathy-phreatic cave passages is more likely to be controlled by the structural effect of prominent faults.


Results 631 to 645 of 656
You probably didn't submit anything to search for