Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That breakthrough is a quantum jump in erosional activity that is associated with the transition from dominantly laminar to dominantly turbulent flow conditions [9]. see turbulent threshold.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for paleoclimate (Keyword) returned 88 results for the whole karstbase:
Showing 76 to 88 of 88
Identifying the Stream Erosion Potential of Cave Levels in Carter Cave State Resort Park, Kentucky, USA, 2011, Jacoby B. S. , Peterson E. W. , Dogwiler T.

Cave levels, passages found at similar elevations and formed during the same constant stream base level event, reveal information about paleoclimates and karst geomorphology. The investigation presented here examines how Stream Power Index (SPI) relates to cave levels. The study area, Carter Caves State Resort Park (CCSRP), is a fluviokarst system in northeastern Kentucky containing multiple cave levels. SPI determines the erosive power overland flow based on the assumption that flow accumulation and slope are proportional to potential for sediment entrainment. Part of this digital terrain analysis requires the creation of a flow accumulation raster from a digital elevation model (DEM). In creating the flow accumulation raster, one has the option to fill depressions (also considered errors) within the DEM. Filling these depressions, or “sinks,” creates a well-connected stream network; however it also removes possible sinkholes from the DEM. This paper also investigates the effects a filled and an unfilled DEM have on SPI and what each reveals about erosion potential in the area. The data shows that low elevations within the filled DEM maintain a high SPI value when compared to the unfilled DEM. The filled DEM also created a stream network similar to reality. The unfilled DEM demonstrated similar SPI results between all levels, indicating a well-connected karst system. In order to truly understand the mechanics of this system, a combination of these two DEMs is required.


Quaternary glaciations of Turkey, 2011, Sarikaya M. A. , Ciner A. , Zreda M.

The cosmogenic exposure ages obtained from glacial landforms in several Turkish mountains provided a basis to reconstruct glacio-chronology and paleoclimate of Turkey. Glacier-related landforms occur in three major regions of Turkey; (1) the Taurus Mountains, along the Mediterranean coast and southeast Turkey, (2) mountain ranges along the Eastern Black Sea Region, and (3) volcanoes and independent mountain chains scattered across the Anatolian Plateau. 10Be 26Al and 36Cl ages show that the oldest and most extensive mountain glaciers were developed during the Last Glacial Maximum. Unusual Early Holocene glaciations, dated to 9 ka-10 ka, were also reported from Mount Erciyes and Aladaglar.


NALPS: a precisely dated European climate record 12060 ka, 2011, Boch R. Cheng H. , Spotl C. , Edwards R. L. , Wang X. , Hauselmann Ph.

Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2_-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext) the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the icecore and the stalagmite chronology (ca. 2900 vs. 3650 yr). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events) and at the end of GI 21 and 25 (rebound-type events), as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented outside Greenland. 


NALPS: a precisely dated European climate record 12060 ka, 2011, Boch R. , Cheng H. , Spotl C. , Edwards R. L. , Wang X. , Hauselmann Ph.

Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2_-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext) the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the icecore and the stalagmite chronology (ca. 2900 vs. 3650 yr). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events) and at the end of GI 21 and 25 (rebound-type events), as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented outside Greenland.

 


Paleoclimate Records from Speleothems, 2012, Polyak Victor J. , Denniston Rhawn F.

Speleothems, mainly stalagmites, are yielding continuous, high-resolution records of past climate. Because calcite in these speleothems can be dated with exceptional accuracy, these records are matching and in some cases exceeding records from lakes, trees, glaciers, and oceans in their importance, and are providing remarkable detail about regional and global climate change history. Multiple records are offered and discussed in this article and show the significance of caves to the field of paleoclimatology.


The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years, 2012, Cheng H. , Zhang P. Z. , Sptl C. , Edwards R. L. , Cai Y. J. , Zhang D. Z. , Sang W. C. , Tan M. , An Z. S.

Central Asia is currently a semiarid-arid region, dominated by the Westerlies. It is important to understand mechanisms of climate and precipitation changes here, as water availability in the region is crucial today and in the future. High-resolution, absolutely-dated oxygen isotope (d18O) records of stalagmites from Kesang Cave characterize a dynamic precipitation history over most of the past 500,000 years. This record demonstrates, for the first time, that climate change in the region exhibits a processional rhythm with abrupt inceptions of low d18O speleothem growth at times of high Northern Hemisphere summer insolation followed by gradual d18O increases that track decreases of insolation. These observations and interpretations contrast with the interpretation of nearby, but higher elevation ice core records. The absolutely-dated cave d18O shifts can be used to correlate the regional climate variability by providing chronological marks. Combined with other paleoclimate records, the Kesang observations suggest that possible incursions of Asian summer monsoon rainfall or related moisture into the Kesang site and/or adjacent areas during the high insolation times may play an important role in changing orbital-scale hydrology of the region. based on our record, arid climate will prevail in this region for the next several millennia, providing that anthropogenic effects do not supersede natural processes.


Uranium Series Dating of Speleothems, 2012, Sptl Christoph, Boch Ronny

Radioactive decay of uranium and thorium isotopes at constant rates provides a tool to determine the age of speleothems with high precision and accuracy. As with any dating method, a fundamental prerequisite is the lack of post-depositional alteration, that is, no gain or loss of isotopes within the decay chain of interest. Using state-of-the-art instrumentation, this method allows dating speleothems between essentially zero and ca. 600,000 years before present. Multiple age determinations are typically performed along the extension axis of a stalagmite to decipher its detailed growth history. Uranium series chronology of speleothems not only provides useful constraints on speleogenetic processes, but forms the backbone of the increasingly important scientific field using stalagmites (and less commonly flowstone) as paleoenvironmental archives.


New insights into the carbon isotope composition of speleothem calcite : an assessment from surface to subsurface, 2012, Meyer, Kyle William

The purpose of this study was to provide new insights into the interpretation of speleothem (cave calcite deposit) δ13C values. We studied two caves in central Texas, which have been actively monitored for over 12 years. We compared δ13C values of soil CO2 (δ13Cs), cave drip water (δ13CDIC), and modern cave calcite (δ13Ccc). Measured average δ13C values of soil CO2 were -13.9 ± 1.4‰ under mixed, shallowly-rooted C3-C4 grasses and were -18.3 ± 0.7‰ under deeply-rooted ashe juniper trees (C3). The δ13CDIC value of minimally-degassed drip water in Natural Bridge Caverns was -10.7 ± 0.3‰. The carbon isotope composition of CO2 in equilibrium with this measured drip water is -18.1 ± 0.3‰. The agreement between juniper soil CO2 and drip water (within ~0.2‰) suggests that the δ13C value of drip water (δ13CDIC) that initially enters the cave is controlled by deeply-rooted plants and may be minimally influenced by host-rock dissolution and/or prior calcite precipitation (PCP). At Inner Space Caverns, δ13CDIC values varied with vegetation above the drip site, distance from the cave entrance, and distance along in-cave flow paths. Whereas CO2 derived from deeply-rooted plants defines the baseline for drip water δ13CDIC entering the caves, kinetic effects associated with the degassing of CO2 and simultaneous precipitation of calcite account for seasonal variability in δ13CDIC and δ13Ccc. We documented increases in δ13CDIC at a rate of up to 0.47‰/hour during the season of peak degassing (winter), suggesting that δ13CDIC variations may be controlled by total elapsed time of CO2 degassing from drip water (Ttotal). We also observed seasonal shifts in the δ13C values of modern calcite grown on glass substrates that are correlated with shifts in drip water δ13CDIC values and drip-rate. Therefore, we suggest that increased aridity at the surface above a given cave results in, slower drip-rates, higher Ttotal, and therefore higher δ13CDIC values. We propose that large variability (>2‰) in speleothem δ13Ccc values dominantly reflect major vegetation changes, and/or increasing Ttotal by slowing drip-rates. Based on these findings, variability in speleothem carbon isotope records may serve as a proxy for paleoaridity and/or paleovegetation change.


Glacial processes in caves, 2012, Luetscher, M.

Glacial processes are known to impinge on many karst systems, of which the active formation of cave ice represents a salient feature. In temperate environments, the preservation of massive, perennial cave ice deposits, comprising sometimes tens of thousands cubic meters, represents probably the most severe test for models of sporadic permafrost distribution. Additionally, stratified cave ice deposits foster detailed glaciochemical investigations to decipher this environmental archive. Recent investigations have shown that the accessible time window for paleoclimate reconstructions sometimes covers several thousands of years, but understanding the relation between external climate change and the cave ice mass balance still remains challenging. Process-oriented studies suggest that interannual cave ice mass balances respond primarily to modifications in the winter thermal and precipitation regimes. By contrast, cave ice ablation is largely driven by heat exchange with the surrounding rock, which is a function of the external mean annual air temperature. Many mid-latitude, low-altitude ice caves are thus likely to disappear under a warming climate scenario. Yet, traces of former glacial processes can be observed in several temperate cave environments. Cryoclasts, solifluction lobes, sorted sediment patterns, cryogenic calcite, and broken speleothems provide clues for the reconstruction of paleo-permafrost. Because they can be accurately dated with U-series methods, cryogenic cave calcites offer a promising field of investigation for past glacial processes 


Flank margin caves in carbonate islands and the effects of sea level., 2013, Mylroie J. E. , Mylroie J. R.

Flank margin caves form in the diffuse flow field of the distal margin of the freshwater lens on carbonate islands and coasts. Dissolution is governed by superposition of mixing zones at the top and bottom of the lens. Flow velocities in the lens margins and organic decay at the lens boundaries enhance dissolution. These caves grow from isolated initiation points in the lens into chambers that amalgamate to form complex, vertically restricted, globular-chamber complexes. The caves and their deposits accurately represent sea-level position and paleoclimate but must be successfully differentiated from sea caves and other pseudokarst features..


Glacial Processes in Caves, 2013, Luetscher, M.

Glacial processes are known to impinge on many karst systems, of which the active formation of cave ice represents a salient feature. In temperate environments, the preservation of massive, perennial cave ice deposits, comprising sometimes tens of thousands cubic meters, represents probably the most severe test for models of sporadic permafrost distribution. Additionally, stratified cave ice deposits foster detailed glaciochemical investigations to decipher this environmental archive. Recent investigations have shown that the accessible time window for paleoclimate reconstructions sometimes covers several thousands of years, but understanding the relation between external climate change and the cave ice mass balance still remains challenging. Process-oriented studies suggest that interannual cave ice mass balances respond primarily to modifications in the winter thermal and precipitation regimes. By contrast, cave ice ablation is largely driven by heat exchange with the surrounding rock, which is a function of the external mean annual air temperature. Many mid-latitude, low-altitude ice caves are thus likely to disappear under a warming climate scenario. Yet, traces of former glacial processes can be observed in several temperate cave environments. Cryoclasts, solifluction lobes, sorted sediment patterns, cryogenic calcite, and broken speleothems provide clues for the reconstruction of paleo-permafrost. Because they can be accurately dated with U-series methods, cryogenic cave calcites offer a promising field of investigation for past glacial processes in caves.


Temporal Variability of cave-Air CO2 in Central Texas, 2013, Cowan B. D. , Osborne M. C. , Banner J. L.

 

The growth rate and composition of cave calcite deposits (speleothems) are often used as proxies for past environmental change. There is, however, the potential for bias in the speleothem record due to seasonal fluctuations in calcite growth and dripwater chemistry. It has been proposed that the growth rate of speleothem calcite in Texas caves varies seasonally in response to density-driven fluctuations in cave-air CO2, with lower growth rates in the warmer months when cave-air CO2 is highest. We monitored CO2 in three undeveloped caves and three tourist caves spread over 130 km in central Texas to determine whether seasonal CO2 fluctuations are confined to tourist caves, which have been modified from their natural states, and the extent to which cave-air CO2 is controlled by variations in cave geometry, host rocks, cave volume, and soils. Nearly 150 lateral transects into six caves over three years show that CO2 concentrations vary seasonally in five of the caves monitored, with peak concentrations in the warmer months and lower concentrations in the cooler months. The caves occur in six stratigraphic units of lower Cretaceous marine platform carbonate rocks and vary in volume (from 100 to .100,000 m3) and geometry. Seasonal CO2 fluctuations are regional in extent and unlikely due to human activity. Seasonal fluctuations are independent of cave geometry, volume, depth, soil thickness, and the hosting stratigraphic unit. Our findings indicate that seasonal variations in calcite deposition may introduce bias in the speleothem record, and should be considered when reconstructing paleoclimate using speleothem proxies.


Layer-bounding surfaces in stalagmites as keys to better paleoclimatological histories and chronologies, 2013, Railsback L. B. , Akers P. D. , Wang L. , Holdridge G. A. , Riavo Voarintsoa N.

Petrographic recognition of layer-bounding surfaces in stalagmites offers an important tool in constructing paleoclimate records. Previous petrographic efforts have examined thickness of layers (a possible proxy for annual rainfall) and alternation of layers in couplets (a possible indicator of seasonality). Layer-bounding surfaces, in contrast, delimit series of layers and represent periods of non-deposition, either because of exceptionally wet or exceptionally dry conditions.

Two types of layer-bounding surfaces can be recognized according to explicitly defined petrographic criteria. Type E layer-bounding surfaces are surfaces at which layers have been truncated or eroded at the crest of a stalagmite. Keys to their recognition include irregular termination of layers otherwise present on the stalagmite’s flank, dissolutional cavities, and coatings of non-carbonate detrital materials. Type E surfaces are interpreted to represent wet periods during which drip water became so undersaturated as to dissolve pre-existing stalagmite layers, and thus they necessarily represent hiatuses in the stalagmite record. Type L layer-bounding surfaces are surfaces below which layers become thinner upward and/or layers have lesser lateral extent upward, so that the stalagmite’s layer-specific width decreases. They are thus surfaces of lessened deposition and are interpreted to represent drier conditions in which drip rate slowed so much that little deposition occurred. A Type L surface may, but does not necessarily, represent a hiatus in deposition. However, radiometric age data show that Type L surfaces commonly represent significant hiatuses.

These surfaces are significant to paleoclimate research both for their implications regarding climate change (exceptionally wet or dry conditions) and in construction of chronologies in which other data, such as stable isotope ratios, are placed. With regard to climate change, recognition of these surfaces provides paleoclimatological information that can complement or even substitute for geochemical proxies. With regard to chronologies, recognition of layer- bounding surfaces allows correct placement of hiatuses in chronologies and thus correct placement of geochemical data in time series. Attention to changing thickness of annual layers and thus to accumulation rate can also refine a chronology. A chronology constructed with attention to layer-bounding surfaces and to changing layer thickness is much more accurate than a chronology in which hiatuses are not recognized at such surfaces.


Results 76 to 88 of 88
You probably didn't submit anything to search for