Search in KarstBase
![]() |
![]() |
![]() |
![]() |
Recharge and contamination of karst aquifers often occur via the unsaturated zone, but the functioning of this zone has not yet been fully understood. Therefore, irrigation and tracer experiments, along with monitoring of rainfall events, were used to examine water percolation and the transport of solutes, particles, and fecal bacteria between the land surface and a water outlet into a shallow cave. Monitored parameters included discharge, electrical conductivity, temperature, organic carbon, turbidity, particle-size distribution (PSD), fecal indicator bacteria, chloride, bromide, and uranine. Percolation following rainfall or irrigation can be subdivided into a lag phase (no response at the outlet), a piston-flow phase (release of epikarst storage water by pressure transfer), and a mixed-flow phase (increasing contribution of freshly infiltrated water), starting between 20 min and a few hours after the start of recharge event. Concerning particle and bacteria transport, results demonstrate that (1) a first turbidity signal occurs during increasing discharge due to remobilization of particles from fractures (pulse-through turbidity); (2) a second turbidity signal is caused by direct particle transfer from the soil (flow-through turbidity), often accompanied by high levels of fecal indicator bacteria, up to 17,000 Escherichia coli/100 mL; and (3) PSD allows differentiation between the two types of turbidity. A relative increase of fine particles (0.9 to 1.5 lm) coincides with microbial contamination. These findings help quantify water storage and percolation in the epikarst and better understand contaminant transport and attenuation. The use of PSD as ‘‘early-warning parameter’’ for microbial contamination in karst water is confirmed.
Haloes of altered oxygen isotope values ranging in size from < 1 m to several km have been reported around hydrothermal ore deposits. We have found that similar alteration zones could be induced by lukewarm to thermal cave-forming waters. A paleo wall in Entrische Kirche cave (Gastein Valley, Austrian Alps) preserved a 5 cm-thick brownish zone behind a thick flowstone. Across this zone the O isotope values gradually increase by 11 ‰, until they reach values characteristic of the unaltered marble. The isotope composition in the alteration zone is very different from that of the ?owstone above but is similar to phreatic calcite spar from hypogene (thermal) karst cavities in surface outcrops in the area. We interpret this isotopic pro?le as re?ection of the water-rock interaction in a low-temperature hydrothermal karst system. Similar alteration pro?les were found around solutional cavities at Höllenstein (Tux Valley, Austrian Alps), lined with hydrothermal calcite. Sigmoid shapes of isotope profiles suggest that the most-altered bedrock was isotopically equilibrated with paleo waters. This allows use of isotope mass-balance calculations to assess the temperature of the paleo waters. Isotope profiles acquired from a number of other hypogene caves in Austria failed to show any isotopic signals of bedrock alteration.
Père Noël cave climatology (air and water temperature, PCO2), hydrology (drip rate, conductivity) and geochemistry of water and calcite deposits (δ18O, δ13C, Mg/Ca and Sr/Ca) where studied to better interpret stable isotopic and trace element variations of speleothems. Results of an automated monitoring station and of manual sampling between 1991 and 1998 have demonstrated the highly seasonal signal of drip rate, its control by water excess and rainfall, and, at a shorter scale to air pressure changes. The modern calcite deposit study suggests a relationship between cave calcite isotopic composition (δ18O and δ13C) and drip rate likely due to variations in degree of isotopic equilibrium during calcite precipitation. δ18O and δ13C of the calcite are therefore, through drip rate, linked to water recharge. Mg/Ca and Sr/Ca ratios of Père Noël cave calcite, depend closely on the residence time of the water, and therefore are also linked to drip rate and therefore to water recharge. This crossed link of δ18O and δ13C as of Mg/Ca and Sr/Ca to water recharge may explain the very similar variations of these four parameters along the longitudinal axis of a Holocene stalagmite, but it may also be the consequence of kinetic effects during calcite precipitation as suggested by similar variations of the four parameters along a single layer of the Holocene stalagmite.
One of the best-known and largest karst areas in Germany, the Blautopf Catchment, offers unique access to waters of the unsaturated zone through a large cave system. It was investigated with stable isotopes (18O/16O and D/H ratios expressed in permille = ‰) in precipitation, seepageand groundwater as tracers for water flow, mixing, and storage. The precipitation showed a distinct seasonality with _18O values between −2.9 and −24.6‰ during summer and winter, respectively. However, the isotope signals in seepage water in the caves as well as the discharge were almost completely buffered and ranged around an average _18O value of −10‰. This value was also close to the long-term average value of local precipitation, −9.3‰. The homogeneous isotopic composition of the Blautopf Spring was unexpected, as its highly variable discharge (0.3 to 32m3 s−1) is typical for a fast responsive karst system. These isotopic similarities could be explained by nearly complete mixing of the water already in the vadose zone. The data set therefore presents a case study to narrow down zones of mixing in karst catchments. It also confirms the minor role of the fast conduit system in the water balance of the Blautopf Catchment.
Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event-scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase-shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.
From analysis of the hydrodynamic and hydrochemical responses of karst springs, it is possible to know the behaviour of the aquifers they drain. This manuscript aims to contribute to the characterization of infiltration process, and to determine the relative importance of the saturated zone and of the unsaturated zone in the hydrogeological functioning of carbonate aquifers, using natural hydrochemical tracers. Thus, chemical components together with temperature and electrical conductivity (both punctual and continuous records) have been monitored in three springs which drain Alta Cadena carbonate aquifer, Southern Spain. An evaluation of the percentage of the electrical conductivity frequency peaks determined for each of the three springs is linked to the chemical parameters that comprise the conductivity signal. One of these springs responds rapidly to precipitation (conduit flow system), due to the existence of a high degree of karstification in the unsaturated zone and in the saturated zone, both of which play a similar role in the functioning of the spring. Another spring responds to precipitation with small increases in water flow, somewhat lagged, because the aquifer has a low degree of karstification, even in the unsaturated zone, which seems to influence its functioning more strongly than does the saturated zone. The third spring drains a sector of the aquifer with a moderately developed degree of karstification, one that is intermediate between the other two, in which both the unsaturated zone and the saturated zone participate in the functioning of the spring, but with the latter zone having a stronger influence. These three springs show different hydrogeological functioning although they are in similar geological and climatic contexts, which show the heterogeneity of karst media and the importance of an adequate investigation for groundwater management and protection in karst areas.
Research highlights
- From analysis of the hydrodynamic and hydrochemical responses of karst springs. - Characterization of the relative importance of the saturated (SZ) and unsaturated (NSZ) zones - Villanueva del Rosario: NSZ and SZ play similar roles in the functioning of the system. ► Pita: NSZ seems to affect its functioning more than SZ. - Parroso: NSZ and SZ participate in the functioning of the system, but SZ is more active.
We propose an interdisciplinary study of karstic aquifers using tiltmeters and GPS observations. The study region is located in northeastern Italy, in the seismic area of the Cansiglio Plateau. The Zöllner type Marussi tiltmeters are installed in a natural cavity (Bus de la Genziana) that is part of an interesting karstic area of particular hydrogeologic importance. The Livenza river forms from a number of springs at the foothills of the karstic massif and flows through the Friuli-Veneto plain into the Adriatic Sea. Comparing the tiltmeter signal recorded at the Genziana station with the local pluviometrical series and the hydrometric series of the Livenza river, a clear correlation is recognized. Moreover, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the water runoff. Here we present the hydrologic induced deformations as observed by tiltmeter and GPS. After heavy rain events we record rapid deformations both by tiltmeters and GPS corresponding to the rainfall duration. In the following days a slow geodetic motion recovers the accumulated deformation with a distinctive pattern both in tilt and GPS data, which correlates with the runoff of the karstic aquifer. The purpose of this research is to open a new multidisciplinary frontier between geodetic and karstic systems studies to improve the knowledge of the underground fluid flow circulation in karstic areas. Furthermore a better characterization of the hydrologic effects on GPS and tilt observations will have the benefit that these signals can be corrected when the focus of the study is to recover the tectonic deformation.
Isotope compositions of carbon and oxygen in calcite deposited to stalagmites are regarded as important proxies for paleo-climate. The number of papers reporting such proxies rises rapidly. Additionally cave monitoring is being performed to observe chemical properties of the water dripping to speleothems, the partial pressure of CO2 in the soil above the cave and in the cave atmosphere, and other parameters outside the cave to relate recent climate conditions to recently deposited calcite.
There are, however, physical and chemical processes independent of climatic conditions, which also contribute to the isotope composition and which can add noise to the climate signal. In this letter I resume these from the current literature to open a more easy access to this problem than available from the current original publications.
Previous studies, motivated by understanding water quality, have explored the mechanisms for heat transport and heat exchange in surface streams. In karst aquifers, temperature signals play an additional important role since they carry information about internal aquifer structures. Models for heat transport in karst conduits have previously been developed; however, these models make different, sometimes contradictory, assumptions. Additionally, previous models of heat transport in karst conduits have not been validated using field data from conduits with known geometries. Here we use analytical solutions of heat transfer to examine the relative importance of heat exchange mechanisms and the validity of the assumptions made by previous models. The relative importance of convection, conduction, and radiation is a function of time. Using a characteristic timescale, we show that models neglecting rock conduction produce spurious results in realistic cases. In contrast to the behavior of surface streams, where conduction is often negligible, conduction through the rock surrounding a conduit determines heat flux at timescales of weeks and longer. In open channel conduits, radiative heat flux can be significant. In contrast, convective heat exchange through the conduit air is often negligible. Using the rules derived from our analytical analysis, we develop a numerical model for heat transport in a karst conduit. Our model compares favorably to thermal responses observed in two different karst settings: a cave stream fed via autogenic recharge during a snowmelt event, and an allogenically recharged cave stream that experiences continuous temperature fluctuations on many timescales.
Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2_-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext) the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the icecore and the stalagmite chronology (ca. 2900 vs. 3650 yr). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional ex
Well-developed karst aquifers consist of highly conductive conduits and a relatively low permeability fractured and/or porous rock matrix and therefore behave as a dualhydraulic system. Groundwater flow within highly permeable strata is rapid and transient and depends on local flow conditions, i.e., pressurized or nonpressurized flow. The characterization of karst aquifers is a necessary and challenging task because information about hydraulic and spatial conduit properties is poorly defined or unknown. To investigate karst aquifers, hydraulic stresses such as large recharge events can be simulated with hybrid (coupled discrete continuum) models. Since existing hybrid models are simplifications of the system dynamics, a new karst model (ModBraC) is presented that accounts for unsteady and nonuniform discrete flow in variably saturated conduits employing the Saint-Venant equations. Model performance tests indicate that ModBraC is able to simulate (1) unsteady and nonuniform flow in variably filled conduits, (2) draining and refilling of conduits with stable transition between free-surface and pressurized flow and correct storage representation, (3) water exchange between matrix and variably filled conduits, and (4) discharge routing through branched and intermeshed conduit networks. Subsequently, ModBraC is applied to an idealized catchment to investigate the significance of free-surface flow representation. A parameter study is conducted with two different initial conditions: (1) pressurized flow and (2) free-surface flow. If free-surface flow prevails, the systems is characterized by (1) a time lag for signal transmission, (2) a typical spring discharge pattern representing the transition from pressurized to free-surface flow, and (3) a reduced conduitmatrix interaction during free-surface flow.
Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2_-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext) the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the icecore and the stalagmite chronology (ca. 2900 vs. 3650 yr). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events) and at the end of GI 21 and 25 (rebound-type events), as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented outside Greenland.
This paper aims to establish evidence for the widespread existence of metal binding and transport by natural organic matter (NOM) in karst dripwaters, the imprint of which in speleothems may have important climatic significance. We studied the concentration of trace metals and organic carbon (OC) in sequentially filtered dripwaters and soil leachates from three contrasting sites: Poole's Cavern (Derbyshire, UK), Lower Balls Green Mine (Gloucestershire, UK) and Grotta di Ernesto (Trentino, Italy). The size-distribution of metals in the three soils was highly similar, but distinct from that found in fractionated dripwaters: surface-reactive metals were concentrated in the coarse fraction (>100 nm) of soils, but in the fine colloidal (b100 nm) and nominally dissolved (b1 nm) fractions of dripwaters. The concentration of Cu, Ni and Co in dripwater samples across all sites were well correlated (R2=0.84 and 0.70, Cu vs. Ni, Cu vs. Co, respectively), indicating a common association. Furthermore, metal ratios (Cu:Ni, Cu:Co) were consistent with NICA-Donnan n1 humic binding affinity ratios for these metals, consistent with a competitive hierarchy of binding affinity (Cu>Ni>Co) for sites in colloidal or dissolved NOM. Large shifts in Cu:Ni in dripwaters coincided with high fluxes of particulate OC (following peak infiltration) and showed increased similarity to ratios in soils, diagnostic of qualitative changes in NOMsupply (i.e. fresh inputs of more aromatic/hydrophobic soil organic matter (SOM) with Cu outcompeting Ni for suitable binding sites). Results indicate that at high-flows (i.e. where fracture-fed flow dominates) particulates and colloids migrate at similar rates, whereas, in slow seepage-flow dripwaters, particulates (>1 μm) and small colloids (1–100 nm) decouple, resulting in two distinct modes of NOM–metal transport: high-flux and low-flux. At the hyperalkaline drip site PE1 (in Poole's Cavern), high-fluxes of metals (Cu, Ni, Zn, Ti, Mn, Fe) and particulate NOM occurred in rapid, short-lived pulses following peak infiltration events, whereas low-fluxes of metals (Co and V>Cu, Ni and Ti) and fluorescent NOM (b ca. 100 nm) were offset from infiltration events, probably because small organic colloids (1–100 nm) and solutes (b1 nm) were slower to migate through the porous matrix than particulates. These results demonstrate the widespread occurrence of both colloidal and particulate NOM–metal transport in cave dripwaters and the importance of karst hydrology in affecting the breakthrough times of different species. Constraints imposed by soil processes (colloid/particle release), direct contributions of metals and NOM from rainfall, and flow-routing (colloid/particle migration) are expected to determine the strength of correlations between NOM-transported metals in speleothems and climatic signals. Changes in trace metal ratios (e.g. Cu:Ni) in speleothems may encode information on NOMcomposition, potentially aiding in targeting of compound-specific investigations and for the assessment of changes in the quality of soil organic matter.
In a complex environment such as karst systems, it is difficult to assess the relative contribution of the different components of the system to the hydrological system response, i.e. spring discharge. Not only is the saturated zone highly heterogeneous due to the presence of highly permeable conduits, but also the recharge processes. The latter are composed of rapid recharge components through shafts and solution channels and diffuse matrix infiltration, generating a highly complex, spatially and temporally variable input signal. The presented study reveals the importance of the compartments vegetation, soils, saturated zone and unsaturated zone. Therefore, the entire water cycle in the catchment area Gallusquelle spring (Southwest Germany) is modelled over a period of 10 years using the integrated hydrological modelling system Mike She by DHI (2007). Sensitivity analyses show that a few individual parameters, varied within physically plausible ranges, play an important role in reshaping the recessions and peaks of the recharge functions and consequently the spring discharge. Vegetation parameters especially the Leaf Area Index (LAI) and the root depth as well as empirical parameters in the relationship of Kristensen and Jensen highly influence evapotranspiration, transpiration to evaporation ratios and recharge respectively. In the unsaturated zone, the type of the soil (mainly the hydraulic conductivity at saturation in the water retention and hydraulic retention curves) has an effect on the infiltration/evapotranspiration and recharge functions. Additionally in the unsaturated karst, the saturated moisture content is considered as a highly indicative parameter as it significantly affects the peaks and recessions of the recharge curve. At the level of the saturated zone the hydraulic conductivity of the matrix and highly conductive zone representing the conduit are dominant parameters influencing the spring response. Other intermediate significant parameters appear to influence the characteristics of the spring response yet to a smaller extent, as for instance bypass and the parameters a in the Van Genuchten relation for soil moisture content curves.
![]() |
![]() |
![]() |
![]() |