MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That initial abstraction is the maximum amount of rainfall absorbed without producing runoff [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for ages (Keyword) returned 900 results for the whole karstbase:
Showing 871 to 885 of 900
Linking mineral deposits to speleogenetic processes in Cova des Pas de Vallgornera (Mallorca, Spain)., 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Onac B. P. , Fornós J. J. , Merino A. , Ginés J. , Diehl J.

Cova des Pas de Vallgornera (CPV) is the premier cave of the Balearic Archipelago. Over 74 km of passages develop within two carbonate lithofacies (reef front and back reef), which ultimately control the patterns of the cave and to some degree its mineral infilling. The diversity of speleothem-forming minerals is four times greater around or within hypogene-related features (vents, rims, cupolas), compared to any other vadose passages in the cave. The mineralogy of speleothems (crusts, nodules, crystals, earthy masses) associated with hypogene features in the seaward upper maze of Sector F is characterized by the presence of aragonite, ankerite, huntite, clay minerals, and quartz. In the Tragus and Nord sectors, however, the dominant mineral is dolomite, along with aragonite, celestine, huntite, clay minerals, and quartz. Calcite is by far the most ubiquitous mineral throughout the cave. Detailed macroscopic and scanning electron microanalysis and imaging have permitted the investigation of textural relationships between the minerals associated with vents, rims, and vent’s roof and walls. These studies along with morphological and stable isotope analyses confirm that not all minerals are connected with a hypogene stage in the cave evolution, and furthermore, none of them appears to be sulfuric acid by-products. Instead, the mineral assemblages documented in speleothems from CPV clearly support at least three speleogenetic pathways, namely seacoast mixing, ascending of warm groundwaters, and meteoric recharge (vadose). Thus, cave minerals in Cova des Pas de Vallgornera hold the keys to reconstruction and understanding of processes and conditions under which they precipitated, allowing to establish their relationship with various speleogenetic pathways

Cave deposits and sedimentary processes in Cova des Pas de Vallgornera (Mallorca, Western Mediterranean), 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Fornós J. J. , Ginés J. , Gràcia F. , Merino A. , Gómezpujol L. , Bover P.

The Cova des Pas de Vallgornera is an important and protected coastal cave, located in the southern part of the island of Mallorca, that outstands due to its length and the complex processes involved in its speleogenesis. Although sediments are not the main topic of interest, their presence as well as their paleontological contents are valuable evidence for paleoclimatic and chronological reconstructions of the cave morphogenesis. The sedimentary infilling is characterized by a scarce presence of clastic sedimentation, mainly composed of silts and clays, which can only be found at some minor passages in the innermost parts of the cave. It corresponds to a clayey sedimentation mainly derived from the soil infiltration that can be found mixed with carbonate particles detached from the cave walls. A particularly different situation occurs in the northernmost end of the cave where an important sequence of silty sands are present, hosting a very rich paleontological deposit. The objective of this paper is to describe the detrital deposits present in the cave by means of the integration of sedimentological, chemical, and mineralogical data, which will aim to provide a better understanding of the processes that have occurred during the system’s speleogenetic evolution.

The role of condensation in the evolution of dissolutional forms in gypsum caves: Study case in the karst of Sorbas (SE Spain), 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Gazquez F. , Calaforra J. M. , Forti P. , Waele J. D. , Sanna L.

The karst of Sorbas (SE Spain) is one of the most important gypsum areas worldwide. Its underground karst network comprises over 100 km of cave passages. Rounded smooth forms, condensation cupola and pendant-like features appear on the ceiling of the shallower passages as a result of gypsum dissolution by condensation water. Meanwhile, gypsum speleothems formed by capillarity, evaporation and aerosol deposition such as coralloids, gypsum crusts and rims are frequently observed closer to the passages floors. The role of condensation-dissolution mechanisms in the evolution of geomorphological features observed in the upper cave levels has been studied by means of long-term Micro-Erosion Meter (MEM) measurements, direct collection and analysis of condensation waters, and micrometeorological monitoring. Monitoring of erosion at different heights on gypsum walls of the Cueva del Agua reveals that the gypsum surface retreated up to 0.033 mm yr- 1 in MEM stations located in the higher parts of the cave walls. The surface retreat was negligible at the lowest sites, suggesting higher dissolution rates close to the cave ceiling, where warmer and moister air flows. Monitoring of microclimatic parameters and direct measurements of condensation water were performed in the Covadura Cave system in order to estimate seasonal patterns of condensation. Direct measurements of condensation water dripping from a metal plate placed in the central part of the El Bosque Gallery of Covadura Cave indicate that condensation takes place mainly between July and November in coincidence with rainless periods. The estimated gypsum surface lowering due to this condensation water is 0.0026 mm yr- 1. Microclimatic monitoring in the same area shows differences in air temperature and humidity of the lower parts of the galleries (colder and drier) with respect to the cave ceiling (warmer and wetter). This thermal sedimentation controls the intensity of the condensation-evaporation mechanisms at different heights in the cave.

Karst piracy: A mechanism for integrating the Colorado River across the Kaibab uplift, Grand Canyon, Arizona, USA, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Hill C. A. , Polyak V. J.

Age, isotopic, and detrital zircon data on the Hualapai Limestone Member and Muddy Creek Formation (western United States) constrain the time of the first arrival of the Colorado River on the west side of the Grand Canyon to ca. 6–5 Ma. We propose a karst piracy mechanism, along with a 17–6 Ma western paleo–Grand Canyon, as an alternative explanation for how the Colorado River became integrated across the Kaibab uplift and for the progressive upsection decrease in δ18O and 87Sr/86Sr values of the Hualapai Limestone Member. An earlier Laramide paleocanyon, along which this western paleocanyon followed, can also perhaps explain why no clastic delta exists in the Grand Wash trough.

Karst piracy is a type of stream piracy where a subterranean drainage connection is made under a topographic divide. The process of karst piracy proceeds through five main stages: (1) establishment of a gradient across a topographic divide due to headward erosion into the low side of the divide, (2) leakage in soluble rock along the steepest gradient, (3) expansion of the leakage route into a cave passage that is able to carry a significant volume of water under the divide, (4) stoping and collapse of rock above the underground river, eventually forming a narrow gorge, and (5) widening of the gorge into a canyon. A karst piracy model is proposed here for the Kaibab uplift area that takes into account the structure and hydrology of that area. Other examples of karst piracy operating around the world support our proposition for integrating the Colorado River across the Kaibab uplift in the Grand Canyon.

Structural and lithological guidance on speleogenesis in quartz–sandstone: Evidence of the arenisation process, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943

A detailed petrographic, structural and morphometric investigation of different types of caves carved in the quartz–sandstones of the “tepui” table mountains in Venezuela has allowed identification of the main speleogenetic factors guiding cave pattern development and the formation of particular features commonly found in these caves, such as funnel-shaped pillars, pendants and floor bumps. Samples of fresh and weathered quartz–sandstone of the Mataui Formation (Roraima Supergroup) were characterised through WDS dispersive X-ray chemical analyses, picnometer measurements, EDAX analyses, SEM and thin-section microscopy. In all the caves two compositionally different strata were identified: almost pure quartz–sandstones, with content of silica over 95% and high primary porosity (around 4%), and phyllosilicate-rich quartz–sandstone, with contents of aluminium over 10% and low primary porosity (lower than 0.5%). Phyllosilicates are mainly pyrophyllite and kaolinite. SEMimages on weathered samples showed clear evidence of dissolution on quartz grains to different degrees of development, depending on the alteration state of the samples. Grain boundary dissolution increases the rock porosity and gradually releases the quartz grains, suggesting that arenisation is a widespread and effective weathering process in these caves. The primary porosity and the degree of fracturing of the quartz–sandstone beds are the main factors controlling the intensity and distribution of the arenisation process. Weathering along iron hydroxide or silt layers, which represent inception horizons, or a strata-bounded fracture network, predisposes the formation of horizontal caves in specific stratigraphic positions. The loose sands produced by arenisation are removed by piping processes, gradually creating anastomosing open-fracture systems and forming braided mazes, geometric networks or main conduit patterns, depending on the local lithological and structural guidance on the weathering process. This study demonstrates that all the typical morphologies documented in these quartz–sandstone caves can be explained as a result of arenisation, which is guided by layers with particular petrographic characteristics (primary porosity, content of phyllosilicates and iron hydroxides), and different degrees of fracturing (strata-bounded fractures or continuous dilational joints).


The show cave of Diros vs. wild caves of Peloponnese, Greece - distribution patterns of Cyanobacteria, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943

The karst cave ‘Vlychada’of Diros, one of the oldest show caves in Peloponnese, sustains extended phototrophic biofilms on various substrata – on rocks inside the cave including speleothems, and especially near the artificial lighting installation (‘Lampenflora’). After a survey of the main abiotic parameters (Photosynthetically Active Radiation -PAR, Temperature -T, Relative Humidity -RH, Carbon Dioxide -CO2) three clusters of sampling sites were revealed according to Principal Component Analysis (PCA): i) the water gallery section predominately influenced by CO2, ii) the dry passages influenced by RH and PAR, and iii) the area by the cave exit at the dry section influenced by temperature. The collected samples from the water gallery section and the dry passages of the cave revealed a total of 43 taxa of Cyanobacteria, with the unicellular/colonial forms being the most abundant. The applied non-metric Multi-dimensional Scaling Ordination (nMDS) of the cumulative species composition showed a clear distinction between the water gallery section and the dry passages of the cave. Further comparison with previous data from other wild caves of Peloponnese (‘Kastria’, ‘Francthi’, and ‘Selinitsa’) was conducted revealing a distinction between the show cave and the wild ones. Apart from the human impact on cave ecosystems – through aesthetic alteration (‘greening’) of cave decorations by the ‘Lampenflora’, and by the cleaning treatments and restoration projects on the speleothems – identification of the organisms constituting the ‘Lampenflora’ might provide taxonomically and ecologically significant taxa.

Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy), 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Piccini L. : Dewaele J. , Galli E. , Polyak V. J. , Bernasconi S. M. , Asmerom Y.

Montecchio cave (Grosseto province, Tuscany, Italy) opens at 320 m asl, in a small outcrop of Jurassic limestone (Calcare Massiccio Fm.), close to the Albegna river. This area is characterised by the presence of several thermal springs and the outcropping of travertine deposits at different altitudes. The Montecchio cave, with passage length development of over 1700 m, is characterised by the presence of several sub-horizontal passages and many medium- and small-scale morphologies indicative of sulphuric acid speleogenesis (SAS). The thermal aquifer is intercepted at a depth of about 100 m below the entrance: the water temperature exceeds 30 °C and sulphate content is over 1300mg l−1. The cave hosts large gypsumdeposits from40 to 100mbelowthe entrance that are by-products of the reaction between sulphuric acid and the carbonate host rock. The lower part of the cave hosts over 1 m thick calcite cave raft deposits, which are evidence of long-standing, probably thermal, water in an evaporative environment related to significant air currents. Sulphur isotopes of gypsumhave negative δ34S values (from−28.3 to−24.2‰), typical of SAS. Calcite cave rafts and speleogenetic gypsumboth yield young U/Th ages varying from68.5 ka to 2 ka BP, indicating a rapid phase of dewatering followed by gypsumprecipitation in aerate environment. This fastwater table lowering is related to a rapid incision of the nearby Albegna river, andwas followed by a 20–30mfluctuation of the thermalwater table, as recorded in the calcite raft deposits and gypsum crusts.

A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain), 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943

Speleogenetic research on alpine caves has advanced significantly during the last decades. These investigations require techniques from different geoscience disciplines that must be adapted to the methodological constraints of working in deep caves. The Picos de Europa mountains are one of the most important alpine karsts, including 14% of the World’s Deepest Caves (caves with more than 1 km depth). A speleogenetic research is currently being developed in selected caves in these mountains; one of them, named Torca La Texa shaft, is the main goal of this article. For this purpose, we have proposed both an optimized multi-method approach for speleogenetic research in alpine caves, and a speleogenetic model of the Torca La Texa shaft. The methodology includes: cave surveying, dye-tracing, cave geometry analyses, cave geomorphological mapping, Uranium series dating (234U/230Th) and geomorphological, structural and stratigraphical studies of the cave surroundings. The SpeleoDisc method was employed to establish the structural control of the cavity. Torca La Texa (2,653 m length, 215 m depth) is an alpine cave formed by two cave levels, vadose canyons and shafts, soutirage conduits, and gravity-modified passages. The cave was formed prior to the Middle Pleistocene and its development was controlled by the drop of the base level, producing the development of the two cave levels. Coevally to the cave levels formation, soutirage conduits originated connecting phreatic and epiphreatic conduits and vadose canyons and shafts were formed. Most of the shafts were created before the local glacial maximum, (43-45 ka) and only two cave passages are related to dolines developed in recent times. The cave development is strongly related to the structure, locating the cave in the core of a gentle fold with the conduits’ geometry and orientation controlled by the bedding and five families of joints.

Incipient vertical traction carpets within collapsed sinkhole fills, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943

Small vertically oriented traction carpets are reported from the collapsed sandy fills of 100 m deep Devonian limestone sinkholes underlying the Lower Cretaceous Athabasca oil sands deposit in north-eastern Alberta, Western Canada. Dissolution of 100 m of underlying halite salt beds caused cataclysmic collapse of the sinkhole floors and water saturated sinkhole sand fills to descend very rapidly. Turbulent currents flushed upper sinkhole fills of friable sandstone blocks and disaggregated sand and quartz pebble for tens of metres. Laminar deposits with inverse grading accumulated as many as six to eight curvilinear entrained pebble streaks, 10 to 30 cm long, vertically impinged against the sides of descending collapse blocks. These deposits were initiated as vertically oriented early stage traction carpets that interlocked fine sand grains and inversely graded overlying pebbles entrained below the dilute overlying turbulent flows. Vortexes that flushed these sinkhole fills and induced these depositional processes may have lasted only seconds before the very rapid descents abruptly halted. Some of the fabrics were suspended vertically in-place and preserved from unlocking and obliteration. These small fabrics provide insight into the instability and ephemeral character of the transition from strong gravity-driven grain falls to very early stages of traction carpet formation. These short-lived deposits of very thin sand layers resulted from sufficient incipient frictional freezing that grain interlocking overcame, however briefly, the strong gravity drives of the vertical falls that would have otherwise dispersed grains and obliterated any organized fabric patterns. Tenuous frictionally locked grains were also suspended at the centres of hyperbolic grain fall flows that briefly developed between turbulent flow eddies, some of which were fortuitously preserved. Some of these suspended grain locking zones passed downward onto the relatively more stable surfaces of the rapidly descending block surfaces. The morphogenesis of these early stage traction carpets differ from more fully developed deposits elsewhere because of their short-lived transport, dynamic instability and vertical orientation.

Karstification of Dolomitic Hills at south of Coimbra (western-central Portugal) - Depositional facies and stratigraphic controls of the (palaeo)karst affecting the Coimbra Group (Lower Jurassic), 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Dimuccio, Luca Antonio

An evolutionary model is proposed to explain the spatio-temporal distribution of karstification affecting the Lower Jurassic shallow-marine carbonate succession (Coimbra Group) of the Lusitanian Basin, cropping out in the Coimbra-Penela region (western-central Portugal), in a specific morphostructural setting (Dolomitic Hills). Indeed, in the Coimbra Group, despite the local lateral and vertical distributions of dolomitic character and the presence of few thick sandy-argillaceous/shale and marly interbeds, some (meso)karstification was identified, including several microkarstification features. All types of karst forms are commonly filled by autochthonous and/or allochthonous post-Jurassic siliciclastics, implying a palaeokarstic nature.

The main aim of this work is to infer the interplay between depositional facies, diagenesis, syn- and postdepositional discontinuities and the spatio-temporal distribution of palaeokarst. Here, the palaeokarst concept is not limited to the definition of a landform and/or possibly to an associated deposit (both resulting from one or more processes/mechanisms), but is considered as part of the local and regional geological record.

Detailed field information from 21 stratigraphic sections (among several dozens of other observations) and from structural-geology and geomorphological surveys, was mapped and recorded on graphic logs showing the lithological succession, including sedimentological, palaeontological and structural data. Facies determination was based on field observations of textures and sedimentary structures and laboratory petrographic analysis of thin-sections. The karst and palaeokarst forms (both superficial and underground) were classified and judged on the basis of present-day geographic location, morphology, associated discontinuities, stratigraphic position and degree of burial by post-Jurassic siliciclastics that allowed to distinguish a exposed karst (denuded or completely exhumed) than a palaeokarst (covered or partially buried).

A formal lithostratigrafic framework was proposed for the local ca. 110-m-thick combined successions of Coimbra Group, ranging in age from the early Sinemurian to the early Pliensbachian and recorded in two distinct subunits: the Coimbra formation, essentially dolomitic; and the overlying S. Miguel formation, essentially dolomitic-limestone and marly-limestone.

The 15 identified facies were subsequently grouped into 4 genetically related facies associations indicative of sedimentation within supra/intertidal, shallow partially restricted subtidal-lagoonal, shoal and more open-marine (sub)environments - in the context of depositional systems of a tidal flat and a very shallow, inner part of a low-gradient, carbonate ramp. In some cases, thick bedded breccia bodies (tempestites/sismites) are associated to synsedimentary deformation structures (slumps, sliding to the W to NW), showing the important activity of N–S and NNE–SSW faults, during the Sinemurian. All these deposits are arranged into metre-scale, mostly shallowing-upward cycles, in some cases truncated by subaerial exposure events. However, no evidence of mature pedogenetic alteration, or the development of distinct soil horizons, was observed. These facts reflect very short-term subaerial exposure intervals (intermittent/ephemeral), in a semiarid palaeoclimatic setting but with an increase in the humidity conditions during the eogenetic stage of the Coimbra Group, which may have promoted the development of micropalaeokarstic dissolution (eogenetic karst).

Two types of dolomitization are recognized: one (a) syndepositional (or early diagenetic), massive-stratiform, of “penesaline type”, possibly resulting from refluxing brines (shallow-subtidal), with a primary dolomite related to the evaporation of seawater, under semiarid conditions (supra/intertidal) and the concurrent action of microbial activity; another (b) later, localized, common during diagenesis (sometimes with dedolomitization), particularly where fluids followed discontinuities such as joints, faults, bedding planes and, in some cases, pre-existing palaeokarstic features.

The very specific stratigraphic position of the (palaeo)karst features is understood as a consequence of high facies/microfacies heterogeneities and contrasts in porosity (both depositional and its early diagenetic modifications), providing efficient hydraulic circulation through the development of meso- and macropermeability contributed by syn- and postdepositional discontinuities such as bedding planes, joints and faults. These hydraulic connections significantly influenced and controlled the earliest karst-forming processes (inception), as well as the degree of subsequent karstification during the mesogenetic/telogenetic stages of the Coimbra Group. Multiple and complex karstification (polyphase and polygenic) were recognized, including 8 main phases, to local scale, integrated in 4 periods, to regional scale: Jurassic, Lower Cretaceous, pre-Pliocene and Pliocene-Quaternary. Each phase of karstification comprise a specific type of (palaeo)karst (eogenetic, subjacent, denuded, mantled-buried and exhumed).

Finally, geological, geomorphological and hydrogeological characteristics allowed to describe the local aquifer. The elaborated map of intrinsic vulnerability shows a karst/fissured and partially buried aquifer (palaeokarst) with high to very high susceptibility to the contamination.

Caves in the Buda Mountains, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
LeélŐssy, Szabolcs

On the territory of Budapest, there are about 170 caves: mainly in the Rózsadomb (Rose Hill) area. The total known length of these caves (in the city) is more than 52 km. The caves of Budapest are hypogene (thermal karstic) caves, dissolved by mixing corrosion of ascending waters along tectonic joints. Therefore, the cave passages are totally independent of surface morphology, and there are no fluviatile sediments in the caves. The origin of the caves can be reconstructed from the careful reconstruction of underground circulation routes. The caves are characterized by varied morphological features: spherical cavities along corridors of various size, the walls and floors, sometimes even the ceilings, of which are well decorated with mineral precipitations (calcite, aragonite and gypsum, a total of almost 20 minerals), the most common being botryoids, but dripstones are also common. The cave passages are mainly formed in the Eocene Szépvölgy Limestone Formation, but the upper part is often in Eocene-Oligocene Buda Marl. The deepest horizon is sometimes in the Triassic limestone (Mátyáshegy Formation). Based on U-series dating of their minerals, the Buda caves are very young (between 0.5 and 1 Ma).

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943

Tectonic research and morphologi calobservations were carried out in six caves (Kalacka, Goryczkowa, Kasprowa Ni¿na, Kasprowa OErednia, Kasprowa Wy¿nia and Magurska) in the Bystra Val ley, in the Tatra Moun -tains. There are three cave lev els, with the youn gest ac tive and the other two in ac tive, re flect ing de vel op ment partly un der epiphreatic and partly un der phreatic con di tions. These stud ies dem on strate strong con trol of the cave pat tern by tec tonic fea tures, in clud ing faults and re lated frac tures that orig i nated or were re ju ve nated dur ing up lift,last ing from the Late Mio cene. In a few lo cal cases, the cave pas sages are guided by the com bined in flu ence of bed ding, joints and frac tures in the hinge zone of a chev ron anticline. That these cave pas sages are guided by tec tonic struc tures, ir re spec tive of lithological dif fer ences, in di cates that these proto-con duits were formed by “tec tonic in cep tion”. Dif fer ences in the cave pat tern be tween the phreatic and epiphreatic zones at a given cave level may be a re sult of mas sif re lax ation. Be low the bot tom of the val ley, the ef fect of stress on the rock mass is re lated to the re gional stress field and only in di vid ual faults ex tend be low the bot tom of the val ley. Thus in the phreatic zone, the flow is fo cused and a sin gle con duit be comes en larged. The lo cal ex ten sion is more in tense in the epiphreatic zone above the val ley floor and more frac tures have been suf fi ciently ex tended to al low wa ter to flow. The wa ter mi grates along a net work of fis sures and a maze could be form ing. Neotectonic dis place ments (of up to 15 cm), which are more re cent than the pas sages, were also iden ti fied in the caves. Neotectonic ac tiv ity is no lon ger be lieved to have as great an im pact on cave mor phol ogy as pre vi ously was thought. Those faults with dis place ments of sev eral metres, de scribed as youn ger than the cave by other au thors, should be re clas si fied as older faults, the sur faces of which have been ex posed by speleogenesis. The pos si ble pres ence of neotectonic faults with greater dis place ments is not ex cluded, but they would have had a much greater mor pho log i cal im pact than the ob served fea tures sug gest.

Tectonic control of cave development: a case study of the Bystra Valley in the Tatra Mts., 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Szczygieł Jacek, Gaidzik Krzysztof, Kicińska Ditta

Tectonic research and morphological observations were carried out in six caves (Kalacka, Goryczkowa, Kasprowa Niżna, Kasprowa Średnia, Kasprowa Wyżnia and Magurska) in the Bystra Valley, in the Tatra Mountains. There are three cave levels, with the youngest active and the other two inactive, reflecting development partly under epiphreatic and partly under phreatic conditions. These studies demonstrate strong control of the cave pattern by tectonic features, including faults and related fractures that originated or were rejuvenated during uplift, lasting from the Late Miocene. In a few local cases, the cave passages are guided by the combined influence of bedding, joints and fractures in the hinge zone of a chevron anticline. That these cave passages are guided by tectonic structures, irrespective of lithological differences, indicates that these proto-conduits were formed by "tectonic inception”. Differences in the cave pattern between the phreatic and epiphreatic zones at a given cave level may be a result of massif relaxation. Below the bottom of the valley, the effect of stress on the rock mass is related to the regional stress field and only individual faults extend below the bottom of the valley. Thus in the phreatic zone, the flow is focused and a single conduit becomes enlarged. The local extension is more intense in the epiphreatic zone above the valley floor and more fractures have been sufficiently extended to allow water to flow. The water migrates along a network of fissures and a maze could be forming. Neotectonic displacements (of up to 15 cm), which are more recent than the passages, were also identified in the caves. Neotectonic activity is no longer believed to have as great an impact on cave morphology as previously was thought. Those faults with displacements of several metres, described as younger than the cave by other authors, should be reclassified as older faults, the surfaces of which have been exposed by speleogenesis. The possible presence of neotectonic faults with greater displacements is not excluded, but they would have had a much greater morphological impact than the observed features suggest.

Gypsum caves as indicators of climate-driven river incision and aggradation in a rapidly uplifting region, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Columbu A. De Waele J. , Forti P, Montagna P. , Picotti V. , Ponsbranchu E. , Hellstrom J. , Bajo P. , Drysdale R.

Detailed geomorphological analysis has revealed that subhorizontal gypsum caves in the Northern Apennines (Italy) cut across bedding planes. These cave levels formed during cold periods with stable river beds, and are coeval with fluvial terraces of rivers that flow perpendicular to the strike of bedding in gypsum monoclines. When rivers entrench, renewed cave formation occurs very rapidly, resulting in the formation of a lower level. River aggradation causes cave alluviation and upward dissolution (paragenesis) in passages nearest to the river beds. The U-Th dating of calcite speleothems provides a minimum age for the formation of the cave passage in which they grew, which in turn provides age control on cave levels. The ages of all speleothems coincide with warmer and wetter periods when CO2 availability in the soils covering these gypsum areas was greater. This climate-driven speleogenetic model of epigenic gypsum caves in moderately to rapidly uplifting areas in temperate regions might be generally applicable to karst systems in different geological and climatic conditions.

Gypsum caves as indicators of climate-driven river incision and aggradation in a rapidly uplifting region, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943

Detailed geomorphological analysis has revealed that subhorizontal gypsum caves in the Northern Apennines (Italy) cut across bedding planes. These cave levels formed during cold periods with stable river beds, and are coeval with fluvial terraces of rivers that flow perpendicular to the strike of bedding in gypsum monoclines. When rivers entrench, renewed cave formation occurs very rapidly, resulting in the formation of a lower level. River aggradation causes cave alluviation and upward dissolution (paragenesis) in passages nearest to the river beds. The U-Th dating of calcite speleothems provides a minimum age for the formation of the cave passage in which they grew, which in turn provides age control on cave levels. The ages of all speleothems coincide with warmer and wetter periods when CO2 availability in the soils covering these gypsum areas was greater. This climate-driven speleogenetic model of epigenic gypsum caves in moderately to rapidly uplifting areas in temperate regions might be generally applicable to karst systems in different geological and climatic conditions.

Results 871 to 885 of 900
You probably didn't submit anything to search for