MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That convection is the process whereby heat is carried along with the flowing ground water [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for lava (Keyword) returned 93 results for the whole karstbase:
Showing 91 to 93 of 93
Morphology of Speleothems in Primary (Lava) and Secondary Caves, 2012, Kempe, S.

Caves are defined as natural underground cavities (potentially) accessible by humans. They are decorated by various forms of speleothems that have always fascinated the human explorer. Caves are divided into primary and secondary caves, that is formed with, or long after the deposition of the rocks containing them. The largest group of primary caves is that formed by flowing lava, whereas the largest group of secondary caves is that formed in limestone. Both display specific forms of speleothems. Although primary caves can contain primary speleothems composed of the rock that formed the cave as wellas secondary speleothems formed by later deposition of minerals, secondary caves in contrast contain only secondary mineral speleothems. Rock- and mineral-composed speleothems commonly have similar morphology, determined by gravity, that is, stalactites and stalagmites. However, both primary and secondary speleothems also display forms that are specific to them. Rock speleothems are composed of basalt, whereas secondary speleothems can be composed of over 250different minerals. In this chapter, we explore differences and similarities of primary rock- and secondary mineral-speleothems and discuss processes of their formation.


Morphology of Speleothems in Primary (Lava-) and Secondary Caves, 2013, Kempe, S.

 

Caves are defined as natural underground cavities (potentially) accessible by humans. They are decorated by various forms of speleothems that have always fascinated the human explorer. Caves are divided into primary and secondary caves, that is, formed with, or long after the deposition of the rocks containing them. The largest group of primary caves is that formed by flowing lava, whereas the largest group of secondary caves is that formed in limestone. Both display specific forms of speleothems. Although primary caves can contain primary speleothems composed of the rock that formed the cave as well as secondary speleothems formed by later deposition of minerals, secondary caves in contrast contain only secondary mineral speleothems. Rock- and mineral-composed speleothems commonly have similar morphology, determined by gravity, that is, stalactites and stalagmites. However, both primary and secondary speleothems also display forms that are specific to them. Rock speleothems are composed of basalt, whereas secondary speleothems can be composed of over 250 different minerals.

In this chapter, we explore differences and similarities of primary rock- and secondary mineral-speleothems and discuss processes of their formation.


HYPOGENE PALEOKARST IN THE TRIASSIC OF THE DOLOMITES (NORTHERN ITALY), 2014, Riva, A.

In the Triassic of successions of the Italian Dolomites (Northern Italy), there are several examples of different types of hypogene paleokarst, sometimes associated with sulfur or hematite ore deposits.The paleokarst features are related to a regional volcanic event occurred during the Ladinian (Middle Triassic) that affected several carbonate platforms of Anisian-Ladinian age.This study is focusing mainly on the Latemar paleokarst, in the Western Dolomites, and on the Salafossa area in the Easternmost Dolomites.
The karst at Latemar developed as the result of a magmatic intrusion located just below the isolated carbonate platform, developing a system of phreatic conduits and some underground chambers, not justified by the entity of the submarine exposure occurring at the top of the carbonate platform. Most of these features are located about 500 m below the subaerial unconformity and are filled with middle Triassic lavas. Only in one case, the filling is represented by banded crusts now totally dolomitized, with abundant hematite. In this case, the only way to explain the presence of the karst at this depth is to invoke a deep CO2 source allowing the dissolution of the carbonate at such depths: the fact that some phreatic conduits and a possible underground chamber are filled only with lavas is pointing toward an important role of volcanism in karst development.
Salafossa is a well-known mine located in the easternmost Dolomites and has been exploited until 1986, when all the activity ceased. The main metals, in this case, are Zn-Pb-Ba-Fe, exploited within a quite complex paleokarst system developed in several levels, filled by a complex mineralized sequence. The strong dissolution led to the development of voids aligned with the main fault controlling the mineralization, with a proper karst system with phreatic morphologies.


Results 91 to 93 of 93
You probably didn't submit anything to search for