MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That workover is the reworking of a well that has declined in yield [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for canada (Keyword) returned 129 results for the whole karstbase:
Showing 106 to 120 of 129
Palustrine Deposits on a Late Devonian Coastal Plain--Sedimentary Attributes and Implications for Concepts of Carbonate Sequence Stratigraphy, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Macneil Alex J. , Jones Brian,
Palustrine deposits in coastal environments can cover thousands of square kilometers and are stratigraphically important. Palustrine deposits that originated in supratidal marshes can be used to track shifts in the shoreline position, whereas palustrine deposits that formed in marshes above the peritidal realm are indicative of subaerial unconformities. Despite the importance of these deposits, there are few documented examples of ancient coastal palustrine deposits, and their sedimentary attributes remain poorly understood. Misinterpretation of coastal palustrine deposits as marine deposits, or calcrete, may partly explain this situation. The Upper Devonian Alexandra Formation, exposed in the Northwest Territories of Canada, is formed of two reef complexes that are separated by a Type I sequence boundary. At the landward part of the platform, this boundary is marked by a succession of coastal-plain deposits that is ~ 50 cm thick. The most distinct aspect of this succession are palustrine deposits characterized by charophytes, skeletal (Rivularia) stromatolites, and various pedogenic features including complex crack networks, root traces, and authigenic kaolinite. Karst features and calcrete, generally regarded as typical indicators of subaerial exposure, are not found. This study highlights the sedimentary attributes that can be used to identify ancient palustrine deposits in marine coastal regions, distinguish these deposits from calcrete, and demonstrates their sequence stratigraphic significance, when found in marine limestone successions. It clearly demonstrates that palustrine deposits, like those found in the Alexandra Formation, should be considered indicative of subaerial unconformities and sequence boundaries, in the same manner as karst and calcrete

Structurally controlled hydrothermal dolomite reservoir facies: An overview, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Davies G. R. , Smith Jr. L. B.

Structurally controlled hydrothermal dolomite (HTD) reservoir facies and associated productive leached limestones are major hydrocarbon producers in North America and are receiving increased exploration attention globally. They include multiple trends in the Ordovician (locally, Silurian and Devonian) of the Michigan, Appalachian, and other basins of eastern Canada and the United States, and in the Devonian and Mississippian of the Western Canada sedimentary basin. They also occur in Jurassic hosts along rifted Atlantic margins, in the Jurassic–Cretaceous of the Arabian Gulf region and elsewhere. Hydrothermal dolomitization is defined as dolomitization occurring under burial conditions, commonly at shallow depths, by fluids (typically very saline) with temperature and pressure (T and P) higher than the ambient T and P of the host formation. The latter commonly is limestone. Proof of a hydrothermal origin for HTD reservoir facies requires integration of burial-thermal history plots, fluidinclusion temperature data, and constraints on timing of emplacement. Hydrothermal dolomite reservoir facies are part of a spectrum of hydrothermal mineral deposits that include sedimentary-exhalative lead-zinc ore bodies and HTD-hostedMississippi Valley–type sulfide deposits. All three hydrothermal deposits show a strong structural control by extensional and/or strike-slip (wrench) faults, with fluid flowtypically focused at transtensional and dilational structural sites and in the hanging wall. Transtensional sags above negative flower structures on wrench faults are favored drilling sites for HTD reservoir facies. Saddle dolomite in both replacive and void-fillingmodes is characteristic of HTD facies. For many reservoirs, matrix-replacive dolomite and saddle dolomite appear to have formed near-contemporaneously and from the same fluid and temperature conditions. The original host facies exerts a major influence on the lateral extent of dolomitization, resultant textures, pore type, and pore volume. Breccias zebra fabrics, shear microfractures, and other rock characteristics record short-term shear stress and pore-fluid-pressure transients, particularly proximal to active faults. High-temperature hydrothermal pulses may alter kerogen in host limestones, a process designated ‘‘forced maturation.’’ basement highs, underlying sandstone (and/ or carbonate?) aquifers (probably overpressured), and overlying and internal shale seals and aquitards also may constrain or influence HTD emplacement. Although many questions and uncertainties remain, particularly in terms of Mg and brine source and mass balance, recognition and active exploration of the HTD play continues to expand. Increasing use of three-dimensional seismic imagery and seismic anomaly mapping, combined with horizontal drilling oblique to linear trends defined by structural sags, helps to reduce risk 


Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada , 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Lonnee J. , Machel H. G.

The Clarke Lake gas field in British Columbia, Canada, is hosted in pervasively dolomitized Middle Devonian carbonates of the Slave Point Formation. The Clarke Lake field consists mostly of pervasive matrix dolomite and some saddle dolomite, the latter varying in volume from about zero in limestones to normally 20–40% (locally up to 80%) in dolostones over any given 10-m (33-ft) core interval. Some of the saddle dolomite is replacive, some is cement, and both varieties are associated with dissolution porosity and recrystallized matrix dolomite. The major objective of this study is to identify the causes and timing of matrix and saddle dolomite formation, specifically, whether these dolomites are hydrothermal. A comprehensive petrographic and geochemical examination indicates that pervasive matrix dolomitization was accomplished by long-distance migration of halite-saturated brines during the Late Devonian toMississippian. Fluid-inclusion homogenization temperatures suggest about 150 (uncorrected) to 190jC (corrected) at the time of matrix dolomitization. These temperatures differ markedly from most published work on the dolomitized Devonian reefs in the Alberta Basin south of the Peace River arch, where pervasive matrix dolomitization was accomplished by advection of slightly modified seawater at temperatures of about 60–80jC, and where no hydrothermal influence was ever present. The saddle dolomites at Clarke Lake are not cogenetic with matrix dolomite and are not the product of hydrothermal dolomitization (sensu stricto). Instead, they formed through the hydrothermal alteration of matrix dolomite by way of invasion of a gypsum-saturated brine during periods of extremely high heat flow and regional plate-margin tectonics in the Late Devonian to Mississippian. Fluidinclusion homogenization temperatures suggest that hydrothermal alteration occurred between 230 (uncorrected) and 267jC (corrected), which is significantly higher than the maximumtemperature of about 190jC attained by the Slave Point Formation during burial. The sources of the halite- and gypsum-saturated brines are Middle Devonian evaporite depositional environments roughly 200 km (124 mi) south and/or east of Clarke Lake, near the Peace River arch


Three-dimensional seismic-based definition of fault-related porosity development: TrentonBlack River interval, Saybrook, Ohio, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Sagan J. A. , Hart B. S.

Oil and gas reservoirs of the Ordovician Trenton–Black River interval in the Appalachian Basin are commonly associated with fault-related hydrothermal dolomites. However, relationships between porosity development and fault geometry in these fields are poorly documented. In this article, we integrate three-dimensional (3-D) seismic and wire-line data from the Trenton–Black River interval at Saybrook field in northeastern Ohio to study relationships between faulting and porosity development there. Faults were mapped using a combination of amplitude and coherency versions of the seismic data, and a 3-D porosity volume was generated for the Trenton–Black River interval by integrating attributes derived from the seismic data with log-based measures of porosity.

The productive trend in the Trenton–Black River interval at Saybrook is controlled by a 3.4-mi (5.5-km)-long, northwest-southeast–oriented basement fault that was probably reactivated during the Taconic orogeny (i.e., Late Ordovician). Strike-slip movement along the fault generated en echelon synthetic shear faults that branch at least 1350 ft (411.5 m) upward into the Trenton–Black River interval. The best porosity is developed in areas between overlapping synthetic shear faults. Antithetic shear faults probably formed at these locations and, when combined with minor dip-slip movement, created conduits for subsequent porosity-generating fluids. Circular collapse structures associated with localized extension between overlapping shear faults are the primary drilling targets, and horizontal wells running parallel to the strike of the fault would have the best chances of intercepting good porosity development.

Justine Sagan obtained her B.Sc. and M.Sc. degrees in the Earth and Planetary Sciences Department at McGill University. The work presented in this article is based on her M.Sc. thesis. She is currently employed by Devon Canada Corporation in Calgary.

 Bruce Hart held positions with the Geological Survey of Canada, Pennsylvania State University, and the New Mexico Bureau of Mines and Mineral Resources prior to joining McGill University in 2000. His research focuses on the integration of three-dimensional seismic and other data types for reservoir characterization programs. He has been an associate editor of the AAPG


Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Wierzbicki R. , Dravis J. J. , Alaasm I. , Harland N.

A large gas reservoir was discovered in the previously unproductive Jurassic-aged Abenaki carbonate margin in 1998. Most of the reservoir porosity is developed in dolostones. These dolostones replaced preexisting wackestones, packstones, and grainstones(?) associated with reefal and adjacent depositional environments. Many dolomites were subsequently recrystallized or dissolved, accounting for much of the preserved secondary porosity. Subsequent fracturing helped enhance reservoir permeabilities. Enhanced petrographic techniques established that dissolution of previously dolomitized fabrics generated much of the secondary porosity in these dolostones. Diffused plane-polarized light revealed relict grains and textures invisible with standard microscopic observations. Petrographic and geochemical observations also confirmed that dissolution occurred under deep-burial conditions after incipient pressure solution. Dissolutionwas not confined to the centers of dolomitized grains, as is commonly seen when remnant calcitic grains dissolve out during the advanced stages of replacement dolomitization. Instead, dissolution was random within relict grains, as isolated dolomite crystals were also variably dissolved. The geochemistry of these dolomites and associated late-stage calcites implied precipitation from basinal hot fluids, as well as hydrothermal fluids. Later diagenetic fluids, either acidic or calcium rich, or perhaps both at different times (based on associated mineralization), seemingly promoted dolomite dissolution. The presence of tectonic fractures and stylolites, helium gas, and faults observed in seismic data implied that dolomitization and subsequent dissolution along the Abenaki platform margin were controlled by reactivated wrench faults tied to basement. On a finer scale, diagenetic fluids moved through fractures and pressuresolution seams. The data collected to date support our contention that the dolomitization and dissolution process, which has created most of the porosity in the Abenaki reservoir, was poststylotization and deeper burial in origin. Given the timing of tectonic activity in the area and its inferred connection to diagenesis, it is probable that at least a part of the diagenetic fluids were hydrothermal in nature 


Acadian biospeleology: composition and ecology of cave fauna of Nova Scotia and southern New Brunswick, Canada., 2007,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Moseley Max
The vertebrate and invertebrate fauna, environment and habitats of caves and disused mines in Nova Scotia and southern New Brunswick are provisionally catalogued and described, based on field collections made over many years. The area was glaciated and the subterranean fauna consists of non-troglobites all of which have arrived and colonised the caves during or following final recession of the Pleistocene glaciers. The statistical composition of the fauna at the higher taxonomic level is similar to that in Ontario, but is less species rich and there are some notable ecological and other differences. Porcupine dung accumulations are an important habitat in the region, constituting a cold-temperate analogue of the diverse guano habitats of southern and tropical caves. Parietal assemblages are, as in other cold temperate regions, an important component of the invertebrate fauna but here include species derived directly from dung communities: another parallel with tropical guano caves. An unanticipated finding is the number of non-indigenous species now utilising local caves. These appear to have colonised unfilled ecological niches, suggesting that post-glacial recolonisation of the subterranean habitat in Nova Scotia has been relatively delayed. Finally the general and regional significance of the subterranean fauna is briefly discussed.

Acadian biospeleology: composition and ecology of cave fauna of Nova Scotia and southern New Brunswick, Canada., 2007,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Moseley Max
The vertebrate and invertebrate fauna, environment and habitats of caves and disused mines in Nova Scotia and southern New Brunswick are provisionally catalogued and described, based on field collections made over many years. The area was glaciated and the subterranean fauna consists of non-troglobites all of which have arrived and colonised the caves during or following final recession of the Pleistocene glaciers. The statistical composition of the fauna at the higher taxonomic level is similar to that in Ontario, but is less species rich and there are some notable ecological and other differences. Porcupine dung accumulations are an important habitat in the region, constituting a cold-temperate analogue of the diverse guano habitats of southern and tropical caves. Parietal assemblages are, as in other cold temperate regions, an important component of the invertebrate fauna but here include species derived directly from dung communities: another parallel with tropical guano caves. An unanticipated finding is the number of non-indigenous species now utilising local caves. These appear to have colonised unfilled ecological niches, suggesting that post-glacial recolonisation of the subterranean habitat in Nova Scotia has been relatively delayed. Finally the general and regional significance of the subterranean fauna is briefly discussed.

Molecular studies on the Niphargus kochianus group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland, 2008,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hanfling, Bernd, Isabel Douterelosoler, Lee Knight And Graham Proudlove.
he Niphargus kochianus group is one of the most westerly and northerly components of the genus Niphargus. All taxa within the group were delimited by morphological characters. However, recent research suggests that morphology alone is inadequate in determining species boundaries in troglobiotic organisms. We used two molecular markers to examine nucleotide diversity in two members of the N. kochianus group, and included other taxa from Genbank. The results indicate that N. kochianus kochianus and N. kochianus irlandicus are very divergent taxa, which have had no common ancestor since the Miocene. Since it is very difficult to reconcile this magnitude of divergence with a recent derivation of irlandicus from kochianus, and there has been a sea water barrier between Great Britain and Ireland for a long period we propose that irlandicus has been resident in Ireland throughout the Pleistocene glacial cycles. Survival in sub-glacial refugia is supported by the presence of species below ice in Iceland and Canada, by the favourable biotic and abiotic conditions under glaciers, and by the physiology of species in the genus. The taxon irlandicus should therefore be considered a separate species Niphargus irlandicus Schellenberg, 1932.

Great Caves of the World, 2008,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Waltham, Tony

A short general introduction, then large photographs and short texts on 28 of the world's great caves, each one selected for some special feature of its geology, geomorhology, biology or history. Sof Omar (Ethiopia); Sterkfontein (South Africa); Castleguard (Canada); Mammoth (Kentucky); Lechuguillaand Carlsbad (New Mexico); Kazumura (Hawaii); Villa Luzand Sac Actun (Mexico); Quashies River (Jamaica); Janelao (Brazil); Pinega (Russia); Krubera (Georgia); Tri Nahacu (Iran); Difeng (China); Akiyoshi (Japan); Hinboun (Laos); Perak Tong and Mulu (Malaysia); Nare (Papua New Guinea); Nullarbor (Australia); Waitomo (New Zealand); Gaping Gill (England); Chauvet and Berger (France); Alpine Ice Caves (Austria); Skocjanske and Krizna (Slovenia).


Formation of seasonal ice bodies and associated cryogenic carbonates in Caverne de lOurs, Que bec, Canada: Kinetic isotope effects and pseudo-biogenic crystal structures, 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Lacelle D. , Lauriol B. , And Clark I. D.
This study examines the kinetics of formation of seasonal cave ice formations (stalagmites, stalactites, hoar, curtain, and floor ice) and the associated cryogenic calcite powders in Caverne de lOurs (QC, Canada), a shallow, thermally-responsive cave. The seasonal ice formations, which either formed by the: (1) freezing of dripping water (ice stalagmite and stalactite); (2) freezing of stagnant or slow moving water (floor ice and curtain ice) and; (3) condensation of water vapor (hoar ice), all (except floor ice) showed kinetic isotope effects associated with the rapid freezing of calcium bicarbonate water. This was made evident in the dD, d18 O and d (deuterium excess) compositions of the formed ice where they plot along a kinetic freezing line. The cryogenic calcite powders, which are found on the surface of the seasonal ice formations, also show kinetic isotope effects. Their d13 C and d18 O values are among the highest measured in cold-climate carbonates and are caused by the rapid rate of freezing, which results in strong C-O disequilibrium between the water, dissolved C species in the water, and precipitating calcite. Although the cryogenic calcite precipitated as powders, diverse crystal habits were observed under scanning electron microscope, which included rhombs, aggregated rhombs, spheres, needles, and aggregated structures. The rhomb crystal habits were observed in samples stored and observed at room temperature, whereas the sphere and needle structures were observed in the samples kept and observed under cryogenic conditions. Considering that the formation of cryogenic calcite is purely abiotic (freezing of calcium bicarbonate water), the presence of spherical structures, commonly associated with biotic processes, might represent vaterite, a polymorph of calcite stable only at low temperatures. It is therefore suggested that care should be taken before suggesting biological origin to calcite precipitates based solely on crystal habits because they might represent pseudo-biogenic structures formed through abiotic processes.

Observations on the Cave-Associated Beetles (Coleoptera) of Nova Scotia, Canada, 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Moseley M.
The cave-associated invertebrates of Nova Scotia constitute a fauna at a very early stage of post-glacial recolonization. The Coleoptera are characterized by low species diversity. A staphylinid Quedius spelaeus spelaeus, a predator, is the only regularly encountered beetle. Ten other terrestrial species registered from cave environments in the province are collected infrequently. They include three other rove-beetles: Brathinus nitidus, Gennadota canadensis and Atheta annexa. The latter two together with Catops gratiosus (Leiodidae) constitute a small group of cave-associated beetles found in decompositional situations. Quedius s. spelaeus and a small suite of other guanophiles live in accumulations of porcupine dung: Agolinus leopardus (Scarabaeidae), Corticaria serrata (Latrididae), and Acrotrichis castanea (Ptilidae). Two adventive weevils Otiorhynchus ligneus and Barypeithes pellucidus (Curculionidae) collected in shallow cave passages are seasonal transients; Dermestes lardarius (Dermestidae), recorded from one cave, was probably an accidental (stray). Five of the terrestrial beetles are adventive Palaearctic species. Aquatic beetles are collected infrequently. Four taxa have been recorded: Agabus larsoni (Dytiscidae) may be habitual in regional caves; another Agabus sp. (probably semivittatus), Dytiscus sp. (Dytiscidae), and Crenitis digesta (Hydrophilidae) are accidentals. The distribution and ecology of recorded species are discussed, and attention is drawn to the association of beetles found in a Nova Scotia ice cave.

Hypogene Speleogenesis and Karst Hydrogeology of Artesian Basins, 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

The volume contains papers presented during the International Conference held May 13 through 17, 2009 in Chernivtsi, Ukraine.

The PDF file contains cover, title and contents pages. Download and save this file to your disk and use hyperlinked titles of papers in the content list to download PDF files of individual papers. 

CONTENTS

PRINCIPAL FEATURES OF HYPOGENE SPELEOGENESIS
Alexander Klimchouk

HYPOGENE CAVE PATTERNS
Philippe Audra, Ludovic Mocochain, Jean-Yves Bigot, and Jean-Claude Nobécourt

MORPHOLOGICAL INDICATORS OF SPELEOGENESIS: HYPOGENIC SPELEOGENS
Philippe Audra, Ludovic Mocochain, Jean-Yves Bigot, and Jean-Claude Nobécourt

HYPOGENE CAVES IN DEFORMED (FOLD BELT) STRATA: OBSERVATIONS FROM EASTERN AUSTRALIA AND CENTRAL EUROPE
R.A.L. Osborne

IDENTIFYING PALEO WATER-ROCK INTERACTION DURING HYDROTHERMAL KARSTIFICATION: A STABLE ISOTOPE APPROACH
Yuri Dublyansky and Christoph Spötl

MICROORGANISMS AS SPELEOGENETIC AGENTS: GEOCHEMICAL DIVERSITY BUT GEOMICROBIAL UNITY
P.J.Boston, M.N. Spilde, D.E. Northup, M.D. Curry, L.A. Melim, and L. Rosales-Lagarde

SIDERITE WEATHERING AS A REACTION CAUSING HYPOGENE SPELEOGENESIS: THE EXAMPLE OF THE IBERG/HARZ/GERMANY Stephan Kempe

SIMULATING THE DEVELOPMENT OF SOLUTION CONDUITS IN HYPOGENE SETTINGS
C. Rehrl, S. Birk, and A.B. Klimchouk

EVOLUTION OF CAVES IN POROUS LIMESTONE BY MIXING CORROSION: A MODEL APPROACH
Wolfgang Dreybrodt, Douchko Romanov, and Georg Kaufmann

SPELEOGENESIS OF MEDITERRANEAN KARSTS: A MODELLING APPROACH BASED ON REALISTIC FRACTURE NETWORKS
Antoine Lafare, Hervé Jourde, Véronique Leonardi, Séverin Pistre, and Nathalie Dörfliger

GIANT COLLAPSE STRUCTURES FORMED BY HYPOGENIC KARSTIFICATION: THE OBRUKS OF THE CENTRAL ANATOLIA, TURKEY
C. Serdar Bayari, N. Nur Ozyurt, and Emrah Pekkans

ON THE ROLE OF HYPOGENE SPELEOGENESIS IN SHAPING THE COASTAL ENDOKARST OF SOUTHERN MALLORCA (WESTERN MEDITERRANEAN)
Joaquín Ginés, Angel Ginés, Joan J. Fornós, Antoni Merino and Francesc Gràcia

HYPOGENE CAVES IN THE APENNINES (ITALY)
Sandro Galdenzi

STEGBACHGRABEN, A MINERALIZED HYPOGENE CAVE IN THE GROSSARL VALLEY, AUSTRIA
Yuri Dublyansky, Christoph Spötl, and Christoph Steinbauer

HYPOGENE CAVES IN AUSTRIA
Lukas Plan, Christoph Spötl, Rudolf Pavuza, Yuri Dublyansky

KRAUSHÖHLE: THE FIRST SULPHURIC ACID CAVE IN THE EASTERN ALPS (STYRIA, AUSTRIA) (Abstract only)
Lukas Plan, Jo De Waele, Philippe Audra, Antonio Rossi, and Christoph Spötl

HYDROTHERMAL ORIGIN OF ZADLAŠKA JAMA, AN ANCIENT ALPINE CAVE IN THE JULIAN ALPS, SLOVENIA
Martin Knez and Tadej Slabe

ACTIVE HYPOGENE SPELEOGENESIS AND THE GROUNDWATER SYSTEMS AROUND THE EDGES OF ANTICLINAL RIDGES
Amos Frumkin

SEISMIC-SAG STRUCTURAL SYSTEMS IN TERTIARY CARBONATE ROCKS BENEATH SOUTHEASTERN FLORIDA, USA: EVIDENCE FOR HYPOGENIC SPELEOGENESIS?
Kevin J. Cunningham and Cameron Walker

HYPOGENE SPELEOGENESIS IN THE PIEDMONT CRIMEA RANGE
A.B. Klimchouk, E.I. Tymokhina and G.N. Amelichev

STYLES OF HYPOGENE CAVE DEVELOPMENT IN ANCIENT CARBONATE AREAS OVERLYING NON-PERMEABLE ROCKS IN BRAZIL AND THE INFLUENCE OF COMPETING MECHANISMS AND LATER MODIFYING PROCESSES
Augusto S. Auler

MORPHOLOGY AND GENESIS OF THE MAIN ORE BODY AT NANISIVIK ZINC/LEAD MINE, BAFFIN ISLAND, CANADA: AN OUTSTANDING EXAMPLE OF PARAGENETIC DISSOLUTION OF CARBONATE BEDROCKS WITH PENE-CONTEMPORANEOUS PRECIPITATION OF SULFIDES AND GANGUE MINERALS IN A HYPOGENE SETTING
Derek Ford

THE INFLUENCE OF HYPOGENE AND EPIGENE SPELEOGENESIS IN THE EVOLUTION OF THE VAZANTE KARST MINAS GERAIS STATE, BRAZIL
Cristian Bittencourt, Augusto Sarreiro Auler, José Manoel dos Reis Neto, Vanio de Bessa and Marcus Vinícios Andrade Silva

HYPOGENIC ASCENDING SPELEOGENESIS IN THE KRAKÓW-CZĘSTOCHOWA UPLAND (POLAND) ? EVIDENCE IN CAVE MORPHOLOGY AND SURFACE RELIEF
Andrzej Tyc

EVIDENCE FROM CERNA VALLEY CAVES (SW ROMANIA) FOR SULFURIC ACID SPELEOGENESIS: A MINERALOGICAL AND STABLE ISOTOPE STUDY
Bogdan P. Onac, Jonathan Sumrall, Jonathan Wynn, Tudor Tamas, Veronica Dărmiceanu and Cristina Cizmaş

THE POSSIBILITY OF REVERSE FLOW PIRACY IN CAVES OF THE APPALACHIAN MOUNTAIN BELT (Abstract only)
Ira D. Sasowsky

KARSTOGENESIS AT THE PRUT RIVER VALLEY (WESTERN UKRAINE, PRUT AREA)
Viacheslav Andreychouk and Bogdan Ridush

ZOLOUSHKA CAVE: HYPOGENE SPELEOGENESIS OR REVERSE WATER THROUGHFLOW?
V. Eirzhyk (Abstract only)

EPIGENE AND HYPOGENE CAVES IN THE NEOGENE GYPSUM OF THE PONIDZIE AREA (NIECKA NIDZIAŃSKA REGION), POLAND
Jan Urban, Viacheslav Andreychouk, and Andrzej Kasza

PETRALONA CAVE: MORPHOLOGICAL ANALYSIS AND A NEW PERSPECTIVE ON ITS SPELEOGENESIS
Georgios Lazaridis

HYPOGENE SPELEOGENESIS IN MAINLAND NORWAY AND SVALBARD?
Stein-Erik Lauritzen

VILLA LUZ PARK CAVES: SPELEOGENESIS BASED ON CURRENT STRATIGRAPHIC AND MORPHOLOGIC EVIDENCE (Abstract only)
Laura Rosales-Lagarde, Penelope J. Boston, Andrew Campbell, and Mike Pullin

HYPOGENE KARSTIFICATION IN SAUDI ARABIA (LAYLA LAKE SINKHOLES, AIN HEETH CAVE)
Stephan Kempe, Heiko Dirks, and Ingo Bauer

HYPOGENE KARSTIFICATION IN JORDAN (BERGISH/AL-DAHER CAVE, UWAIYED CAVE, BEER AL-MALABEH SINKHOLE)
Stephan Kempe, Ahmad Al-Malabeh, and Horst-Volker Henschel

ASSESSING THE RELIABILITY OF 2D RESISTIVITY IMAGING TO MAP A DEEP AQUIFER IN CARBONATE ROCKS IN THE IRAQI KURDISTAN REGION
Bakhtiar K. Aziz and Ezzaden N. Baban

FEATURES OF GEOLOGICAL CONDITIONS OF THE ORDINSKAYA UNDERWATER CAVE, FORE-URALS, RUSSIA
Pavel Sivinskih

INIAAIIINOE AEIIAAIIIAI NIAEAIAAIACA AI?II-NEEAA?AOIE IAEANOE CAIAAIIAI EAAEACA
A.A.Aao?ooaa

AEOAEIIIA NO?IAIEA AEA?IAAINOA?U: IIAAEU AA?OEEAEUIIE CIIAEUIINOE
A.I. Eaoaaa

?IEU EA?NOA A OI?IE?IAAIEE NIEAIUO AIA E ?ANNIEIA IEAI?ENEIAI AANNAEIA
Aeaenaia? Eiiiiia, Na?aae Aeaenaaa, e Na?aae Nooia


MORPHOLOGY AND GENESIS OF THE MAIN ORE BODY AT NANISIVIKZINC/LEAD MINE, BAFFIN ISLAND, CANADA: AN OUTSTANDING EXAMPLEOF PARAGENETIC DISSOLUTION OF CARBONATE BEDROCKS WITHPENE-CONTEMPORANEOUS PRECIPITATION OF SULFIDES AND GANGUEMINERALS, 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Ford D.

Nanisivik (Inuit – “the place where they find things’) zinc/lead mine is located at Lat. 73o N in northwestern Baf?n Island. The host rock is a Proterozoic platform carbonate 260-800 m thick, medium to massively bedded and pervasively dolomitized. It rests on mixed shales and shaly dolomites, and is overlain by 150+ m of further shales functioning as an aquitard. These formations were buried by later Proterozoic strata, uplifted, eroded and buried again in a Cambrian sedimentary basin. The ore-grade deposits are contained within a horst block of the dolomites dipping NW at 15o across it. Graben to the north and south are roofed in the overlying shales. The principal deposit, the Main Ore, is of zinc, lead and iron sul?de precipitates plus gangue minerals, chie?y secondary dolomite. It extends for three km E-W along the horst. It is horizontal, at ~300 m above sea level and terminated at both ends by modern valley entrenchments. The Main Ore body is consistently ~100 m in width and ?ve-seven m in depth. This wide ceiling is a nearly planar, horizontal corrosion bevel. The sulfdes scarcely extend above it anywhere. Within the Main Ore two or more generations of tapered ?ns of dolomite in situ extend from both south (updip) and north (downdip) walls into the cavity. Fin surfaces truncate the bedding. Edges of ?ns are sinuous, some meandering with a wavelength of ~50 m. Very sharp, horizontal corrosion notches 20-30 cm high extend into the dolomite walls for at least 20 m (the limit of deep crosscuts in the mine). They are ?lled with layered pyrites which continue out into the ore body as regular sheets truncating earlier, dipping mineral layers until they themselves are truncated by later fillings. One exceptional notch, one meter deep, is at least 350 m in breadth. The ore displays four sedimentary modes: (i) regular layers settled or precipitated onto the cavity floor; (ii) chaotic polymict breccias suggestive of channel cut-and-?ll episodes; (iii) the horizontal pyrite sheets in corrosion notches; (iv) minor metasomatic replacements of dolomite. The ore cavity was created by paragenesis in a channel ?ow mode, with ore and gangue deposition on the floor taking place in tandem with dissolutional cavity creation upwards,. Principal deposition took place when a fluid interface could be rigorously maintained. Fluid inclusions indicate derivation of the metals from exchange reactions with metalliferous sediments (the underlying shales), indicating low water/rock ratios and moderate temperatures. The ore fluids were similar to oil field brines. Sulfur isotope fractionations indicate temperatures of 90-150 +/-40o C, suggesting that the Main Ore formed along a gas/brine interface at a depth of at least 1600 m as a consequence of ?uid expulsion in the subsiding Cambrian sedimentary basin.


The role of buried bedrock valleys on the development of karstic aquifers in flat-lying carbonate bedrock: insights from Guelph, Ontario, Canada, 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cole Jason, Coniglio Mario, Gautrey Simon


Observations on the Cave-Associated Beetles (Coleoptera) of Nova Scotia, Canada, 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Moseley, M.

The cave-associated invertebrates of Nova Scotia constitute a fauna at a very early stage of post-glacial recolonization. The Coleoptera are characterized by low species diversity. A staphylinid Quedius spelaeus spelaeus, a predator, is the only regularly encountered beetle. Ten other terrestrial species registered from cave environments in the province are collected infrequently. They include three other rove-beetles: Brathinus nitidus, Gennadota canadensis and Atheta annexa. The latter two together with Catops gratiosus (Leiodidae) constitute a small group of cave-associated beetles found in decompositional situations. Quedius s. spelaeus and a small suite of other guanophiles live in accumulations of porcupine dung: Agolinus leopardus (Scarabaeidae), Corticaria serrata (Latrididae), and Acrotrichis castanea (Ptilidae). Two adventive weevils Otiorhynchus ligneus and Barypeithes pellucidus (Curculionidae) collected in shallow cave passages are seasonal transients; Dermestes lardarius (Dermestidae), recorded from one cave, was probably an accidental (stray). Five of the terrestrial beetles are adventive Palaearctic species. Aquatic beetles are collected infrequently. Four taxa have been recorded: Agabus larsoni (Dytiscidae) may be habitual in regional caves; another Agabus sp. (probably semivittatus), Dytiscus sp. (Dytiscidae), and Crenitis digesta (Hydrophilidae) are accidentals. The distribution and ecology of recorded species are discussed, and attention is drawn to the association of beetles found in a Nova Scotia “ice cave”.


Results 106 to 120 of 129
You probably didn't submit anything to search for