MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That effluent cave is see outflow cave.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for jurassic (Keyword) returned 125 results for the whole karstbase:
Showing 121 to 125 of 125
Die Erdflle von Layla und Al-Kharj Einblicke in die Karst-Hydrogeologie des oberen Jura von Saudi-Arabien, 2013, Schleusener Florian, Kempe Stephan, Dirks Heiko, Rausch Randolf, Gbel Patricia

Until the end of the 20th century, the sinkholelakes of Layla and Al-Kharj formed oases in central Saudi Arabia. They were fed by ascending groundwater from the karstified Upper Jurassic anhydrites of the Arab and Hith formations. Morphologic features of a cave near Al-Kharj and hydraulic heads in wells of the Layla region show that the karstification of the anhydrites was hypogene. The karstification led to zones of collapse in the overlying Cretaceous sediments. Because of the exploitation of the underlying aquifer, the sinkhole-lakes dried up, exposing worldwide singular sublacustrine gypsum tufas on their walls. The gypsum tufas and widespread gypsum crusts in the vicinity of the sinkholes reflect the former ascent of the sulphateenriched groundwater.


HOW DEEP IS HYPOGENE? GYPSUM CAVES IN THE SOUTH HARZ, 2014, Kempe, S.

Germany currently features 20 caves in sulfate rocks (gypsum and anhydrite) longer than 200 m. Most of them occur either in the Werra-Anhydrite or in the Hauptanhydrite of the evaporitic Zechstein series (Upper Permian). One occurs in the Jurassic Münder Mergel and two in the Triassic Grundgips. The longest, the Wimmelburger Schlotten, is 2.8 km long with a floor area of 24,000 m2. All caves, except four, occur in the South Harz, where the Zechstein outcrop fringes the uplifted and tilted Variscian Harz. These caves can be divided into three general classes: (i) epigenic caves with lateral, turbulent water flow, and (ii) shallow or (iii) deep phreatic caves with slow convective density-driven dissolution. The latter were discovered during historic copper-shale mining and called “Schlotten” by the miners; most of them are not accessible any more. Shallow phreatic caves occur in several areas, most notably in the Nature Preserve of the Hainholz/Beierstein at Düna/Osterode/Lower Saxony. Here, we sampled all water bodies in May 1973 and monitored 31 stations between Nov. 23rd, 1974, and April 24th, 1976, with a total 933 samples, allowing us to characterize the provenance of these waters. These monitoring results were published only partially (PCO2 data, see Kempe, 1992). Here, I use the data set to show that the Jettenhöhle (the largest cave in the Hainholz) has been created by upward moving, carbonate-bearing, groundwater of high PCO2. Even though the cave has now only small cave ponds and essentially is a dry cave above the ground water level, it is a hypogene cave because of the upward movement “of the cave-forming agent” (sensu Klimchouk, 2012). Likewise, the Schlotten are created by water rising from the underlying carbonate aquifer, but under a deep phreatic setting


Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy), 2014, Piccini L. : Dewaele J. , Galli E. , Polyak V. J. , Bernasconi S. M. , Asmerom Y.

Montecchio cave (Grosseto province, Tuscany, Italy) opens at 320 m asl, in a small outcrop of Jurassic limestone (Calcare Massiccio Fm.), close to the Albegna river. This area is characterised by the presence of several thermal springs and the outcropping of travertine deposits at different altitudes. The Montecchio cave, with passage length development of over 1700 m, is characterised by the presence of several sub-horizontal passages and many medium- and small-scale morphologies indicative of sulphuric acid speleogenesis (SAS). The thermal aquifer is intercepted at a depth of about 100 m below the entrance: the water temperature exceeds 30 °C and sulphate content is over 1300mg l−1. The cave hosts large gypsumdeposits from40 to 100mbelowthe entrance that are by-products of the reaction between sulphuric acid and the carbonate host rock. The lower part of the cave hosts over 1 m thick calcite cave raft deposits, which are evidence of long-standing, probably thermal, water in an evaporative environment related to significant air currents. Sulphur isotopes of gypsumhave negative δ34S values (from−28.3 to−24.2‰), typical of SAS. Calcite cave rafts and speleogenetic gypsumboth yield young U/Th ages varying from68.5 ka to 2 ka BP, indicating a rapid phase of dewatering followed by gypsumprecipitation in aerate environment. This fastwater table lowering is related to a rapid incision of the nearby Albegna river, andwas followed by a 20–30mfluctuation of the thermalwater table, as recorded in the calcite raft deposits and gypsum crusts.


Karstification of Dolomitic Hills at south of Coimbra (western-central Portugal) - Depositional facies and stratigraphic controls of the (palaeo)karst affecting the Coimbra Group (Lower Jurassic), 2014, Dimuccio, Luca Antonio

An evolutionary model is proposed to explain the spatio-temporal distribution of karstification affecting the Lower Jurassic shallow-marine carbonate succession (Coimbra Group) of the Lusitanian Basin, cropping out in the Coimbra-Penela region (western-central Portugal), in a specific morphostructural setting (Dolomitic Hills). Indeed, in the Coimbra Group, despite the local lateral and vertical distributions of dolomitic character and the presence of few thick sandy-argillaceous/shale and marly interbeds, some (meso)karstification was identified, including several microkarstification features. All types of karst forms are commonly filled by autochthonous and/or allochthonous post-Jurassic siliciclastics, implying a palaeokarstic nature.

The main aim of this work is to infer the interplay between depositional facies, diagenesis, syn- and postdepositional discontinuities and the spatio-temporal distribution of palaeokarst. Here, the palaeokarst concept is not limited to the definition of a landform and/or possibly to an associated deposit (both resulting from one or more processes/mechanisms), but is considered as part of the local and regional geological record.

Detailed field information from 21 stratigraphic sections (among several dozens of other observations) and from structural-geology and geomorphological surveys, was mapped and recorded on graphic logs showing the lithological succession, including sedimentological, palaeontological and structural data. Facies determination was based on field observations of textures and sedimentary structures and laboratory petrographic analysis of thin-sections. The karst and palaeokarst forms (both superficial and underground) were classified and judged on the basis of present-day geographic location, morphology, associated discontinuities, stratigraphic position and degree of burial by post-Jurassic siliciclastics that allowed to distinguish a exposed karst (denuded or completely exhumed) than a palaeokarst (covered or partially buried).

A formal lithostratigrafic framework was proposed for the local ca. 110-m-thick combined successions of Coimbra Group, ranging in age from the early Sinemurian to the early Pliensbachian and recorded in two distinct subunits: the Coimbra formation, essentially dolomitic; and the overlying S. Miguel formation, essentially dolomitic-limestone and marly-limestone.

The 15 identified facies were subsequently grouped into 4 genetically related facies associations indicative of sedimentation within supra/intertidal, shallow partially restricted subtidal-lagoonal, shoal and more open-marine (sub)environments - in the context of depositional systems of a tidal flat and a very shallow, inner part of a low-gradient, carbonate ramp. In some cases, thick bedded breccia bodies (tempestites/sismites) are associated to synsedimentary deformation structures (slumps, sliding to the W to NW), showing the important activity of N–S and NNE–SSW faults, during the Sinemurian. All these deposits are arranged into metre-scale, mostly shallowing-upward cycles, in some cases truncated by subaerial exposure events. However, no evidence of mature pedogenetic alteration, or the development of distinct soil horizons, was observed. These facts reflect very short-term subaerial exposure intervals (intermittent/ephemeral), in a semiarid palaeoclimatic setting but with an increase in the humidity conditions during the eogenetic stage of the Coimbra Group, which may have promoted the development of micropalaeokarstic dissolution (eogenetic karst).

Two types of dolomitization are recognized: one (a) syndepositional (or early diagenetic), massive-stratiform, of “penesaline type”, possibly resulting from refluxing brines (shallow-subtidal), with a primary dolomite related to the evaporation of seawater, under semiarid conditions (supra/intertidal) and the concurrent action of microbial activity; another (b) later, localized, common during diagenesis (sometimes with dedolomitization), particularly where fluids followed discontinuities such as joints, faults, bedding planes and, in some cases, pre-existing palaeokarstic features.

The very specific stratigraphic position of the (palaeo)karst features is understood as a consequence of high facies/microfacies heterogeneities and contrasts in porosity (both depositional and its early diagenetic modifications), providing efficient hydraulic circulation through the development of meso- and macropermeability contributed by syn- and postdepositional discontinuities such as bedding planes, joints and faults. These hydraulic connections significantly influenced and controlled the earliest karst-forming processes (inception), as well as the degree of subsequent karstification during the mesogenetic/telogenetic stages of the Coimbra Group. Multiple and complex karstification (polyphase and polygenic) were recognized, including 8 main phases, to local scale, integrated in 4 periods, to regional scale: Jurassic, Lower Cretaceous, pre-Pliocene and Pliocene-Quaternary. Each phase of karstification comprise a specific type of (palaeo)karst (eogenetic, subjacent, denuded, mantled-buried and exhumed).

Finally, geological, geomorphological and hydrogeological characteristics allowed to describe the local aquifer. The elaborated map of intrinsic vulnerability shows a karst/fissured and partially buried aquifer (palaeokarst) with high to very high susceptibility to the contamination.


Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy), 2015, Piccini Leonardo, De Waele Jo, Galli Ermanno, Polyak Victor J. , Bernasconi Stefano M. Asmerom Yemane

Montecchio cave (Grosseto province, Tuscany, Italy) opens at 320 m asl, in a small outcrop of Jurassic limestone (Calcare Massiccio Fm.), close to the Albegna river. This area is characterised by the presence of several thermal springs and the outcropping of travertine deposits at different altitudes. The Montecchio cave, with passage length development of over 1700 m, is characterised by the presence of several sub-horizontal passages and many medium- and small-scale morphologies indicative of sulphuric acid speleogenesis (SAS). The thermal aquifer is intercepted at a depth of about 100 m below the entrance: the water temperature exceeds 30 °C and sulphate content is over 1300 mg l−1. The cave hosts large gypsumdeposits from40 to 100mbelowthe entrance that are by-products of the reaction between sulphuric acid and the carbonate host rock. The lower part of the cave hosts over 1 m thick calcite cave raft deposits, which are evidence of long-standing, probably thermal, water in an evaporative environment related to significant air currents.

Sulphur isotopes of gypsum have negative δ34S values (from−28.3 to−24.2‰), typical of SAS. Calcite cave rafts and speleogenetic gypsumboth yield young U/Th ages varying from68.5 ka to 2 ka BP, indicating a rapid phase of dewatering followed by gypsum precipitation in aerate environment. This fastwater table lowering is related to a rapid incision of the nearby Albegna river, and was followed by a 20–30 m fluctuation of the thermal water table, as recorded in the calcite raft deposits and gypsum crusts.


Results 121 to 125 of 125
You probably didn't submit anything to search for