MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That pyrrhotite is a cave mineral - fes [11].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for magnitude (Keyword) returned 147 results for the whole karstbase:
Showing 136 to 147 of 147
Entrances, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
White, William B.

Entrances are connections between an underlying cave passage and the surface above. Most cave entrances are statistical accidents where the breakthrough to the surface is caused by collapse, by valley deepening, or by human activities such as road cuts, quarries, and other excavations. The number of caves with a certain number of entrances decreases rapidly with the number of entrances, leading to the prediction of a large number of caves that have no entrances. Entrances range in size over several orders of magnitude but there is no relationship between the size of the entrance and the size of the cave.

Modeling of Karst Aquifers, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Kaufmann Georg, Romanov Douchko, Dreybrodt Wolfgang

Groundwater flow through a karst aquifer is prone to contamination because of the very nature of the karstified host rock: Fissures and bedding partings in the rock are enlarged by chemical dissolution over time and provide preferential flow paths, through which water is transferred rapidly and almost unfiltered from input points such as sinks and dolines to output points such as large karst springs. The enlarged fractures and bedding partings are responsible for a very heterogeneous distribution of permeability within the karst aquifer. Enlarged passages can be very conductive (1–10 m s−1) but have low storage capacity. The surrounding rock is orders of magnitude less conductive (10−8 m s−1), but can provide significant storage. This large-scale heterogeneity in conductivity makes it difficult to assess the karst aquifer properties from field studies such as borehole pumping, packer, and slug tests. Monitoring spring discharge, on the other hand, provides only an integral picture of the karst aquifer. A different approach to understanding a karst aquifer and its spatial and temporal evolution are numerical models. This field has evolved dramatically over the last decades, and is described in this article.

Effective porosity of a carbonate aquifer with bacterial contamination: Walkerton, Ontario, Canada, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Worthington S. R. H. , Smart C. C. , Ruland W.

Preferential flow through solutionally enlarged fractures can be a significant influence on travel times and source area definition in carbonate aquifers. However, it has proven challenging to step beyond a conceptual model to implementing, parameterizing and testing an appropriate numerical model of preferential flow. Here both porous medium and preferential flow models are developed with respect to a deadly contamination of the municipal groundwater supply at Walkerton, Ontario, Canada. The preferential flow model is based on simple orthogonal fracture aperture and spacing. The models are parameterized from bore hole, gamma, flow and video logs resulting in a two order of magnitude lower effective porosity for the preferential flow model. The observed hydraulic conductivity and effective porosity are used to predict groundwater travel times using a porous medium model. These model predictions are compared to a number of independent estimates of effective porosity, including three forced gradient tracer tests. The results show that the effective porosity and hydraulic conductivity values closely match the preferential flow predictions for an equivalent fracture network of _10 m spacing of 1 mm fractures. Three tracer tests resulted in groundwater velocities of hundreds of meters per day, as predicted when an effective porosity of 0.05% was used in the groundwater model. These velocities are consistent with a compilation of 185 tracer test velocities from regional Paleozoic carbonate aquifers. The implication is that carbonate aquifers in southern Ontario are characterized by relatively low-volume dissolutionally enlarged fracture networks that dominate flow and transport. The porous matrix has large storage capacity, but contributes little to transport. Numerical models based on much higher porosities risk significantly underestimating capture zones in such aquifers. The hydraulic conductivity – effective porosity prediction framework provides a general analytical frame work for a preferential flow carbonate aquifer. Not only is the framework readily parameterized from borehole observations, but also it can be implemented in a conventional porous medium model, and critically tested using simple tracer tests.

Cave sediments as geologic tiltmeters, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Stock, G. M.

Caves are sheltered environments that can preserve unique evidence of climatic and tectonic events. A variety of cave deposits, primarily calcite shelfstone formed along pool margins, delineate formerly level surfaces. In tectonically active areas, the orientation of these surfaces can be measured with respect to horizontal to determine the magnitude of local or regional tilt. In many cases, these deposits can also be dated by a variety of geochronologic methods, such as U–Th and 14C, allowing for calculation of tilting rates. This chapter reviews previous research using cave sediments as geologic tiltmeters, describes various approaches to the problem, and discusses potential future applications

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Faulkner Trevor


It is commonly stated in the literature that the “breakthrough” point at the transition from slow high-order to fast firstorder dissolution kinetics in limestone occurs at an exit aperture of about one centimetre, and that this coincides with the transition from a wholly laminar flow to a turbulent flow. These relationships are approximately true for a range of conduit geometries in sub-horizontally bedded strata. However, the exit aperture for the onset of turbulence varies with the hydraulic gradient whereas the exit aperture for the onset of first-order kinetics varies with the hydraulic ratio, which is the hydraulic gradient divided by the path length. These transitions only occur at the same exit aperture for planar fissures and cylindrical tubes of lengths 290 m and 452 m. Breakthrough can occur before or after the onset of turbulence. Aperture sizes for breakthrough and turbulence can be over a metre for long and shallow conduits but sub millimetre for short and steep conduits. This paper analyses these relationships for many conduits in natural and artificial conditions and discusses their relevance to the multitude of possible karst situations, where hydraulic ratios can be considered over 17 orders of magnitude.

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Simone Argiolas, Caddeo Guglielmo Angelo, Casu Lucilla, Muntoni Alberto, Papinuto Silvestro

Since many years cavers from different caving teams are carrying out a systematic study on the caves of Sulcis-Iglesiente, including geomorphological studies. Over thirty natural caves have been explored, surveyed and registered in the past few years, and over half of these have been made accessible by mine galleries. Among these are worth to be mentioned the “Tre Sorelle” of Domusnovas: these are three mine caves intercepted by the San Paolo mine tunnel. This tunnel, whose collapsed entrance has been reopened after a long digging campaign, has been explored and surveyed for around 700 meters. A total of 10 natural caves, mostly developed along fractures, have been explored and mapped, with developments ranging between 10 and 250 meters and depths from 15 to over 160 meters. Only two of these caves were previously known in the Regional Cave Register. In most of the caves, speleothems consist mainly of flowstones, some of which are clear or usually white, others are dark-brown or tending to black. Some samples of the first and the second flowstone types were collected respectively from the “Sesta Sorella” and “Seconda Sorella” Caves. The powders of these samples were analysed by an X-ray diffractometer. The first type consists of thicker layers of white and fibrous aragonite, which sometimes alternate with thinner layers of grey columnar calcite. In some samples, however, calcite interlayers were absent and just aragonite was found. The second type is composed of alternating layers of darkbrown hemimorphite. Some additional analyses were performed on these samples by Laser Ablation ICP-MS to determine the concentration of minor and trace elements in the different layers and mineralogical phases. The most abundant minor elements in calcite layers are Mg and Zn. Magnesium is about constant (~ 2000 ppm) on different spots and remains under the average Mg content of the cave calcite in this region, whereas Zn ranges from 103 to 104 ppm and is well above the Zn average in calcite of caves in the world. Barium concentration is about 80 ppm and more abundant than Pb (20 ppm) and Sr (10 ppm). Barium is also the main minor element in aragonite, where it can reach almost 2000 ppm. The Zn concentration is very high even in aragonite and is comparable to that of Sr (400-500 ppm), overcoming considerably the Pb concentration (20 ppm). In hemimorphite, the most abundant minor elements are Al and Fe (about 104 ppm). However, it was not quantified how much of these are in the hemimorphite lattice or come from some impurities. Actually, we notice that concentration of Fe and Al in the black layers of hemimorphite is an order of magnitude greater than in the brown ones. In addition, the black layers show an abrupt increase of Mn concentration, which overcomes Fe and Al. The evolution of these flowstones is most probably related to the circulation of fluids connected to the oxidation of sulphides, specially sphalerite.

Deep hydrogeology: a discussion of issues and research needs, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Tsang Chinfu, Niemi Auli

In this essay, “deep hydrogeology” is somewhat arbitrarily defined as hydrogeology in the subsurface deeper than 1 km, below which the effect of residual permeability at high stresses becomes evident (Neuzil 2003; Rutqvist and Stephansson 2003; Liu et al. 2009). Studies have shown that meteoric fluids are present in the earth’s crust from land surface to at least a depth of 10–15 km (Kozlowsky 1987; Taylor Jr 1990; Zharikov et al. 2003; Ge et al. 2003). At such depths, interaction with surface water and surface events over time periods of 100 or 1,000 years may be minimal, except in areas of very deep mining activities or where deep convection is enhanced by active magmatism. Deep drilling to several kilometers in depth is often done for petroleum and geothermal reservoir exploration and exploitation. The focus of such activities is reservoir identification, capacity evaluation, and fluid and heat extractability. However, it is largely an open area of research to understand the state, structure and evolution of deep hydrogeology over time scales of tens of thousands of years or more, especially in areas lacking petroleum and geothermal resources. Interest in attaining such an understanding has emerged from the need for long-term predictions related to nuclear waste disposal and from recognition of the role that hydrogeology may play in seismicity, orogenesis and various geological processes, as well as in global fluid and chemical cycles. A number of wide-ranging questions may be asked regarding deep hydrogeology, several of which are as follows: What are the current and past states of fluid pressure, temperature and chemical composition in deep formations? How does fluid transport mass and heat? What are the fluid sources and driving mechanisms? What are the magnitude and distribution of porosity and permeability? What are the occurrence and characteristics of large-scale flow, including thermally and chemically driven convection systems? What is the nature of local anomalous fluid pressures and what are their implications? The purpose of this essay is to discuss key issues and research needs in deep hydrogeology. It is based on a workshop on the subject held at Uppsala University in Sweden, with participants from 11 countries, including the USA, Russia, Japan and a number of European countries (Tsang et al. 2012). The following discussion will be divided into sections on permeability structures, driving forces, coupled processes, borehole testing and data analysis, followed by a few concluding remarks.

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Andreychouk Viacheslav, Tyc Andrzej

Karst hazards are an important example of natural hazards. They occur in areas with soluble rocks (carbonates, mostly limestone, dolomite, and chalk; sulfates, mostly gypsum and anhydrite; chlorides, mostly rock salt and potassium salt; and some silicates, quartzite and amorphous siliceous sediments) and efficient underground drainage. Karst is one of the environments in the world most vulnerable to natural and human-induced hazards. Karst hazards involve fast-acting processes, both on the surface and underground (e.g., collapse, subsidence, slope movements, and floods) and their effects (e.g., sinkholes, degraded aquifers, and land surface). They frequently cause serious damage in karst areas around the world, particularly in areas of intense human activity. Karst threat is the potential hazard to the life, health, or welfare of people and infrastructure, arising from the particular geological structure and function of karst terrains. The presence of underground cavities in the karst massif masks the threat from the hazards of collapse. This means that in some instances, the potential threats from karst, which are inherent features of the karst environment, become hazards. They range in category from potential to real. The term (karst hazards) is related to two other terms, used mostly in applied geosciences, particularly engineering geology – risk assessment and mitigation. Risk is the probability of an occurrence, and the consequential damages are defined as hazards. Risk assessment is the determination of quantitative or qualitative value of risk related to a concrete situation and a recognized hazard. Quantitative risk assessment requires calculations of two components: the magnitude of the potential loss and the probability that the loss will occur. Risk assessment is a step in a risk management. Mitigation may be defined as the reduction of risk to life and the environment by reducing the severity of collapse or subsidence, building subsidence-resistant constructions, restricting land use, etc.

Do carbonate karst terrains affect the global carbon cycle?, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Martin Jonathan B. , Brown Amy, Ezell John

Carbonate minerals comprise the largest reservoir of carbon in the earth’s lithosphere, but they are generally assumed to have no net impact on the global carbon cycle if rapid dissolution and precipitation reactions represent equal sources and sinks of atmospheric carbon. Observations of both terrestrial and marine carbonate systems indicate that carbonate minerals may simultaneously dissolve and precipitate within different portions of individual hydrologic systems. In all cases reported here, the dissolution and precipitation reactions are related to primary production, which fixes atmospheric CO2 as organic carbon, and the subsequent remineralization in watersheds of the organic carbon to dissolved CO2. Deposition of carbonate minerals in the ocean represents a flux of CO2 to the atmosphere. The dissolution of oceanic carbonate minerals can act either as a sink for atmospheric CO2 if dissolved by carbonic acid, or as a source of CO2 if dissolved through sulfide oxidation at the freshwater-saltwater boundary. Since dissolution and precipitation of carbonate minerals depend on ecological processes, changes in these processes due to shifts in rainfall patterns, earth surface temperatures, and sea level should also alter the potential magnitudes of sources and sinks for atmospheric CO2 from carbonate terrains, providing feedbacks to the global carbon cycle that differ from modern feedbacks.

Vadose CO2 gas drives dissolution at water tables in eogenetic karst aquifers more than mixing dissolution, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Gulley J. , Martin J. , Moore P.

Most models of cave formation in limestone that remains near its depositional environment and has not been deeply buried (i.e. eogenetic limestone) invoke dissolution from mixing of waters that have different ionic strengths or have equilibrated with calcite at different pCO2 values. In eogenetic karst aquifers lacking saline water, mixing of vadose and phreatic waters is thought to form caves. We show here calcite dissolution in a cave in eogenetic limestone occurred due to increases in vadose CO2 gas concentrations and subsequent dissolution of CO2 into groundwater, not by mixing dissolution. We collected high-resolution time series measurements (1 year) of specific conductivity (SpC), temperature, meteorological data, and synoptic water chemical composition from a water table cave in central Florida (Briar Cave).We found SpC, pCO2 and calcite undersaturation increased through late summer, when Briar Cave experienced little ventilation by outside air, and decreased through winter, when increased ventilation lowered cave CO2(g) concentrations.We hypothesize dissolution occurred when water flowed from aquifer regions with low pCO2 into the cave, which had elevated pCO2. Elevated pCO2 would be promoted by fractures connecting the soil to the water table. Simple geochemical models demonstrate that changes in pCO2 of less than 1% along flow paths are an order of magnitude more efficient at dissolving limestone thanmixing of vadose and phreatic water.We conclude that spatially or temporally variable vadose CO2(g) concentrations are responsible for cave formation becausemixing is too slow to generate observed cave sizes in the time available for formation. While this study emphasized dissolution, gas exchange between the atmosphere and karst aquifer vadose zones that is facilitated by conduits likely exerts important controls on other geochemical processes in limestone critical zones by transporting oxygen deep into vadose zones, creating redox boundaries that would not exist in the absence of caves.

Limestone weathering rates accelerated by micron-scale grain detachment, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943

The weathering of carbonate rocks plays a critical role in the evolution of landscapes, the erosion of buildings and monuments, and the global-scale shifting of carbon from the atmosphere to the ocean. Chemical dissolution is often assumed to govern the rates of weathering of carbonate rocks, although some studies have suggested that mechanical erosion could also play an important role. Quantifying the rates of the different processes has proved challenging, in part due to the high degree of variability encountered across different scales in both field and laboratory conditions. To constrain the rates and mechanisms controlling long-term limestone weathering, we analyze a lidar scan of the Western Wall, a Roman-period edifice located in Jerusalem. We find that extreme erosion rates in fine-grained micritic limestone blocks are as much as two orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. Atomic force microscope imaging of dissolving micritic limestone suggests that these elevated reaction rates are likely to be the result of rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that such grain detachment could be the dominant erosional mode for fine-grained carbonate rocks in many regions on Earth.

Thermal damping and retardation in karst conduits, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Luhmann A. J. , Covington M. D. , Myre J. M. , Perne M. , Jones S. W. , Alexander Jr. E. C. , Saar M. O

Water temperature is a non-conservative tracer in the environment. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. However,within karst aquifers, seasonal and short-term fluctuations in recharge temperature are often transmitted over long distances before they are fully damped. Using analytical solutions and numerical simulations, we develop relationshipsthat describe the effect of flow path properties, flow-through time, recharge characteristics, and water and rock physical properties on the damping and retardation of thermal peaks/troughs in karst conduits. Using these relationships, one can estimate the thermal retardation and damping that would occur under given conditions with a given conduit geometry. Ultimately, these relationships can be used with thermal damping and retardation field data to estimate parameters such as conduit diameter. We also examine sets of numerical simulations where we relax some of the assumptions used to develop these relationships, testing the effects of variable diameter, variable velocity, open channels, and recharge shape on thermal damping and retardation to provide some constraints on uncertainty. Finally, we discuss a multitracer experiment that provides some field confirmation of our relationships. High temporal resolution water temperature data are required to obtain sufficient constraints on the magnitude and timing of thermal peaks and troughs in order to take full advantage of water temperature as a tracer.


Results 136 to 147 of 147
You probably didn't submit anything to search for