MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That lost circulation is the result of drilling fluid escaping from a borehole into the formation by way of crevices within the formation [6]. it is a common occurrence in most karst aquifers due to the existence of large subsurface voids that are sometimes intersected during a drilling program.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for contamination (Keyword) returned 150 results for the whole karstbase:
Showing 136 to 150 of 150
Modeling of Karst Aquifers, 2012, Kaufmann Georg, Romanov Douchko, Dreybrodt Wolfgang

Groundwater flow through a karst aquifer is prone to contamination because of the very nature of the karstified host rock: Fissures and bedding partings in the rock are enlarged by chemical dissolution over time and provide preferential flow paths, through which water is transferred rapidly and almost unfiltered from input points such as sinks and dolines to output points such as large karst springs. The enlarged fractures and bedding partings are responsible for a very heterogeneous distribution of permeability within the karst aquifer. Enlarged passages can be very conductive (1–10 m s−1) but have low storage capacity. The surrounding rock is orders of magnitude less conductive (10−8 m s−1), but can provide significant storage. This large-scale heterogeneity in conductivity makes it difficult to assess the karst aquifer properties from field studies such as borehole pumping, packer, and slug tests. Monitoring spring discharge, on the other hand, provides only an integral picture of the karst aquifer. A different approach to understanding a karst aquifer and its spatial and temporal evolution are numerical models. This field has evolved dramatically over the last decades, and is described in this article.


Springs, 2012, White, William B.

Springs are localized points where groundwater returns to surface routes. Karst springs drains integrated conduit and fracture networks and often have very high discharges. Most spring waters have temperatures very close to local seasonal averages but some waters rise from depths and produce thermal springs. Spring discharges tend to respond rapidly to storm recharge. The hydrographs of springs can be analyzed to provide information on the conduit system that feeds the spring. Karst springs are highly vulnerable to contamination from surface sources. Great caution must be exercised before using karst springs as water supplies.


Delineating Protection Areas for Caves Using Contamination Vulnerability Mapping Techniques: The Case of Herreras Cave, Asturias, Spain, 2012, Marn A. I. , Andrea B. , Jimnezsnchez M. , Dominguezcuesta M. J. , Melndezasensio

 

Diverse approaches are adopted for cave protection. One approach is delineating protection areas with regard to their vulnerability to contamination. This paper reports the main results obtained from the delineation of a protection zone for Herrerı´as Cave, declared of Cultural Interest by the Asturias Regional Government, based on assessing its vulnerability to contamination. The cave is situated in a complex karst hydrogeologic environment in which groundwater flows from southwest to northeast, following the bedrock structure. A stream flows inside the cave, emerging in a spring located to the northeast of the system. Karst recharge occurs by direct infiltration of rainfall over limestone outcrops, concentrated infiltration of surface runoff in the watershed draining the cave, and deferred infiltration of water from alluvial beds drained by influent streams. The soil and vegetation covers are natural in the majority of the test site, but land uses in the watershed, including scattered farming, stock breeding, quarrying, and tourist use, are changing the natural characteristics and increasing the cave’s vulnerability to contamination. The procedure followed for delineating protection zones is based on the method COP+K that is specifically designed for vulnerability mapping of groundwater springs in carbonate aquifers. To cover the hydrological basin included in the cave’s catchment area, the protection zones established includes two different areas, the hydrogeological catchment basin and adjacent land that contributes runoff. Different degrees of protection in the zones have been proposed to make human activity compatible with conservation of the cave, and our results show remarkable differences from the protection zone previously proposed for the same area.


Biodiversity and conservation of subterranean fauna fromPortuguese karst. Ph.D. Thesis, 2012, Ana Sofia Reboleira

This research is a contribution to the study of subterranean biodiversity in karst areas of Portugal, towards its conservation.

The relative inaccessibility of the subterranean environment is a challenge for the study of its fauna, often accessible only in caves but more widely distributed. The subterranean animals are among the most rare, threatened and worldwide underprotected, often by the simple fact of being unknown.

Karst areas of Portugal occupy a considerable part of the territory and harbor more than 2000 caves. The complex biogeographical history of the Iberian Peninsula allowed the survival of several relict arthropod refugees in the subterranean environment.

Subterranean invertebrates have been ignored, as for as the protection of karst systems are concerned in Portugal, largely because knowledge was scarce and disorganized. Reviewing all the bibliographic sources about subterranean fauna from Portugal and listing troglobiont and stygobiont species and locations, was essential to understand the state of knowledge of species richness and the biogeography and conservation status for the studied areas.

In order to understand subterranean biodiversity patterns in karst areas from Portugal, one year of intense fieldwork was performed in more than 40 caves from 14 karst units. Several new species for science were discovered and 7 taxa comprising 2 new genera and 5 new species were described.

Bearing in mind that spatial distribution of subterranean species is crucial to ecological research and conservation, the distribution of hypogean species, from Portuguese karst areas, was mapped using geographic information systems. Also, its subterranean richness was compared with other areas of the world and missing species were estimated on a regional scale. The subterranean biodiversity patterns were analyzed, and several factors were tested to explain richness patterns. Evapotranspiration and the consequent high productivity on the surface may be determinant in the species richness in the different karst units of Portugal, but the depth of the caves and the unique geological features of every massif seemed to play a more important role.

In order to evaluate the tolerance of organisms to groundwater contamination, the acute toxicity of two substances were tested on stygobiont crustaceans with different degrees of troglomorphism. Our study showed that the high levels of endemism contribute to remarkably different toxicological responses within the same genus.

The major problems related to conservation of subterranean habitats were associated to direct destruction and their contamination. These ecosystems lack of specific protection, implying an adequate management of surface habitats and the establishment of priority areas. Integrating all the previous information, this study establishes a ranking of sites for conservation of subterranean fauna in karst areas of Portugal.This research is a contribution to the study of subterranean biodiversity in karst areas of Portugal, towards its conservation.

The relative inaccessibility of the subterranean environment is a challenge for the study of its fauna, often accessible only in caves but more widely distributed. The subterranean animals are among the most rare, threatened and worldwide underprotected, often by the simple fact of being unknown.

Karst areas of Portugal occupy a considerable part of the territory and harbor more than 2000 caves. The complex biogeographical history of the Iberian Peninsula allowed the survival of several relict arthropod refugees in the subterranean environment.

Subterranean invertebrates have been ignored, as for as the protection of karst systems are concerned in Portugal, largely because knowledge was scarce and disorganized. Reviewing all the bibliographic sources about subterranean fauna from Portugal and listing troglobiont and stygobiont species and locations, was essential to understand the state of knowledge of species richness and the biogeography and conservation status for the studied areas.

In order to understand subterranean biodiversity patterns in karst areas from Portugal, one year of intense fieldwork was performed in more than 40 caves from 14 karst units. Several new species for science were discovered and 7 taxa comprising 2 new genera and 5 new species were described.

Bearing in mind that spatial distribution of subterranean species is crucial to ecological research and conservation, the distribution of hypogean species, from Portuguese karst areas, was mapped using geographic information systems. Also, its subterranean richness was compared with other areas of the world and missing species were estimated on a regional scale. The subterranean biodiversity patterns were analyzed, and several factors were tested to explain richness patterns. Evapotranspiration and the consequent high productivity on the surface may be determinant in the species richness in the different karst units of Portugal, but the depth of the caves and the unique geological features of every massif seemed to play a more important role.

In order to evaluate the tolerance of organisms to groundwater contamination, the acute toxicity of two substances were tested on stygobiont crustaceans with different degrees of troglomorphism. Our study showed that the high levels of endemism contribute to remarkably different toxicological responses within the same genus.

The major problems related to conservation of subterranean habitats were associated to direct destruction and their contamination. These ecosystems lack of specific protection, implying an adequate management of surface habitats and the establishment of priority areas. Integrating all the previous information, this study establishes a ranking of sites for conservation of subterranean fauna in karst areas of Portugal.


Environmental Hydrogeological Study of Louros watershed, Epirus, Greece, 2012, Konstantina Katsanou

The present study aims to describe and characterize the Ionian zone karst formation concerning the karstification grade of carbonate formations and the development of aquifers, through the hydrogeological study of Louros River drainage basin, considering hydrological, hydrogeological and meteorological data, as well as major, trace element, rare earth element and isotope concentrations. It also aims to investigate basic karst properties such as storativity, homogeneity, infiltration coefficients and the parameters of the Louros basin hydrological balance.

To accomplish this aim daily discharge measurements obtained from Public Power Corporation at the Pantanassa station during the years 1956-1957, along with random discharge measurements from 15 springs along the basin performed by IGME between the years 1979-1989, daily meteorological data from 18 stations and 18 sets of potentiometric surface measurements from 38 sites were compiled. Additionally, chemical analyses on major and trace element concentrations of 42 rock samples and of five sets of water samples from 64 sampling sites, along with fourteen sets of successive periods in order to study the seasonal variation in the chemical composition of 11 springs and REE concentrations of 116 water samples. Moreover isotope ratios from 129 rain samples collected at five different altitudes, 331 samples of surface and groundwater samples, radon measurements on 21 groundwater samples and microbiological on 46 samples of surface and groundwater were evaluated. Daily runoff and random spring discharge missing data were completed applying the SAC-SMA and MODKARST simulation algorithms and the values of these parameters for the duration of the research (2008-2010) were predicted. The accuracy of the predicted values was tested applying statistical methods but also against observed values from in situ measurements performed during the same period (2008-2010).

Louros River drainage basin is located at the southern part of Epirus and covers an area of 953 km2. It is elongated and together with the adjacent basin of River Arachthos they constitute the major hydrographic systems discharging in the Amvrakikos Gulf. The main morphological features of the basin are elongated mountain ranges and narrow valleys, which are the result of tectonic and other geological processes mainly controlled by the limestone-“flysch” alternations. The length of the river’s major channel, which is parallel to the major folding direction (NNW-SSE), is 73.5 km. The mountainous part of the hydrogeological basin covers an area of 400 km2 and its endpoint was set at the Pantanassa station, where discharge measurements are performed. The underground limits of the basin coincides with the surface one, defined by the flysch outcrops at the western margin of the Ziros-Zalongo fault zone to the South, the application of isotope determinations and hydraulic load distribution maps at the North and East.

Geologically, Louros River drainage basin is composed of the Ionian zone formations. Triassic evaporites constitute the base of the zone overlain by a thick sequence of carbonate and clastic sedimentary rocks deposited from the Late Triassic to the Upper Eocene. In more detail, from base to top, the lithostratigraphical column of the zone includes dolomite and dolomitic limestone, Pantokrator limestone, Ammonitico Rosso, Posidonia Shales, Vigla limestone, Upper Senonian limestone, Palaeocene-Eocene limestone and Oligocene “flysch”. The major tectonic features of the regions are folds with their axes trending SW-NE at the northern part and NNW-SSE to NNE-SSW southern of the Mousiotitsa-Episkopiko-Petrovouni fault system and the strike-slip fault systems of Ziros and Petousi.

The evaluation of the daily meteorological data revealed that December is the most humid month of the year followed by January, whereas July and August are the driest months. Approximately 40-45% of the annual precipitation is distributed during the winter time and 30% during autumn. The mean annual precipitation ranges from 897.4 to 2051.8 mm and the precipitation altitude relationship suggests an increased precipitation with altitude at a rate of 84 mm/100 m. The maximum temperature is recorded during August and it may reach 40°C and the minimum during January. The temperature variation with the altitude is calculated at 0.61°C/100 m. The maximum solarity time is 377.8 h, recorded during July at the Arta station. December displays the highest relative humidity with a value of 84.2% recorded again at the Arta station. The highest wind velocity values are recorded at the Preveza station and similar velocities are also recorded at the Ioannina station. The real evapotranspiration in Louros drainage basin ranges between 27-39%. The potential evapotranspiration was calculated from the Ioannina station meteorological data, which are considered more representative for Louros basin, at 785.8 mm of precipitation according to Thornthwaite and at 722.0 mm according to Penman-Monteith.

According to the SAC-SMA algorithm the total discharge (surficial and underground) for the years 2008-2010 ranges between 61-73% of the total precipitation. The algorithm simulates the vertical percolation of rainwater in both unsaturated and saturated zones taking into account 15 parameters including the tension water capacity of the unsaturated zone, the maximum water storage capacity of both unsaturated and saturated zones, the water amount escaping into deeper horizons and not recorded at the basin’s outlet, the percentage of impermeable ground which is responsible for instant runoff, etc. These parameters are correlated to the hydrograph and are recalculated according to it. Two interesting aspects were pointed out from the discharge measurements and the algorithm application. The first is related to the maximum amount of free water, which can be stored at the basic flow of the karstic system, which is very high for the whole basin, reaching 1200 mm of precipitation and the second is the amount of water filtered to the deeper horizons, which reaches 0.098.

The discharge of individual karstic units was simulated applying the specialized MODKARST code. The code, which transforms precipitation to discharge resolving mathematical equations of non-linear flow using the mass and energy balance, successfully completed the time series of available data of spring discharge measurements for the period between the years 2008-2010.

Additionally, a number of useful parameters including spring recharge, delay period between precipitation and discharge, the storage capacity of the discharge area were also calculated by the MODKARST code. These data enabled the calculation of the annual infiltration coefficient for each one of the 15 springs and for the whole basin; the latter was found to range between 38-50% of annual precipitation. The total supply area was estimated approximately at 395 km2, which is consistent with the area of Louros hydrogeological basin calculated from hydrogeological data.

The 18 sets of water table measurements, each one corresponding to a different period, revealed that the aquifers of the intermediate part of Louros basin, which are developed in Quaternary alluvial sediments, are laterally connected to the carbonate formations of the individual karstic spring units, forming a common aquifer with a common water table.

Groundwater flow follows a general N-S direction from the topographic highs to the coastal area with local minor shifts to NE-SW and NW-SE directions. The artificial lake at the position of the Public Power Corporation’s Dam at the south of the region is directly connected to the aquifer and plays an important role in water-level variation. The water table contours display a higher gradient to the southern part due to the decreased hydraulic conductivity of the limestones close to Agios Georgios village. The decreased hydraulic conductivity is believed to be the reason for the development of the homonymous spring although the hydraulic load distributions suggest the extension of the aquifer to the south and a relation to the water level in Ziros Lake, boreholes and the Priala springs. The hydraulic gradient in the broader region ranges between 4-16‰. The absolute water level variation between dry and humid season ranges from 2 m at the South to 15-20 m to the North with an average of 9 m.

The hydrological balance of Louros River mountainous basin according to the aforementioned data is calculated as follows: The total precipitation between the years 2008-2010 ranged between 5.67E+08-9.8E+08 m3 and the discharge at Pantanassa site between 3.47E+08-6.83E+08 m3. The real evapotransiration ranged between 29-39% of the precipitation. The total discharge (runoff and groundwater) accounted for 61-73% of the precipitation, whereas the basic flow due to the percolation ranged between 34-38%. Considering a mean water level variation of 9 m, between the dry and humid season, the water amount constituting the local storage is 2025Ε+07 m3.

Statistical evaluation on spring discharge data and the recession curves analysis revealed three distinct levels with diverse karstic weathering along Louros basin coinciding to the upper, intermediate and low flow of Louros River, respectively. The developed karstic units are generally complex but simple individual units develop as well. The response of spring discharge to the stored water amounts is immediate but with relatively large duration suggesting the storage of large quantities of water and a well-developed system of karstic conduits, which however has not yet met its complete evolution. The karst spring’s units are homogeneous and each one is distinguished from different recession coefficients.

The three levels of flow are also distinguished from the duration curves, which point to individual units upstream, complex units receiving and transmitting water to the adjacent ones in the middle part and complex that only receive water from the upper. This distinguishment is also enhanced by the groundwater’s major ion concentrations, which reveal Ca-HCO3 water-type upstream, along with the isotopic composition at the same part. The prevalent Ca-HCO3-Cl-SO4 water-type in the middle part, the Na-Ca-Cl-SO4 water-type downstream and isotope variation confirms this distinguishment. Moreover, REE variation is also consistent with the three levels. The assumption of relatively large stored water reserves, which contribute to analogous “memory” of spring karstic units, as pointed out by autocorreletion functions is enhanced from SAC-SMA algorithm which premises an increased capacity at the lower zone of basic flow, as well as from the hydrochemical and isotopic composition of groundwater. Monitoring of the seasonal variation in groundwater composition revealed minor variations of hydrochemical parameters and remarkably stable isotopic composition. Both aspects can be explained by the existence of a considerable water body acting as a retarder to external changes.

The crosscorrelation functions suggest a well-developed karstic system, which however has not yet reached its complete maturity also confirmed from field observations. The same conclusion is extracted from the homogeneous evolution at the interval of each karstic unit as demonstrated from recession curves on spring hydrographs.

The results from hydrochemical analyses also revealed the effect of evaporitic minerals and phosphate-rich rocks in groundwater composition and confirmed the hydraulic relationships between surface and groundwater.

The study of the isotopic composition also contributed to exclude the potential connection between the Ioannina and Louros basins, confirmed the meteoric origin of groundwater and revealed the effect of seawater in the chemical composition of few sampling sites.

The microbiological research only revealed minor incidents of contamination and significant attenuation of microorganisms during periods of high discharge.


Biodiversity and conservation of subterranean fauna of Portuguese karst. Ph.D. thesis, 2012, Ana Sofia P. S. Reboleira

This research is a contribution to the study of subterranean biodiversity in karst areas of Portugal, towards its conservation.

The relative inaccessibility of the subterranean environment is a challenge for the study of its fauna, often accessible only in caves but more widely distributed. The subterranean animals are among the most rare, threatened and worldwide underprotected, often by the simple fact of being unknown.

Karst areas of Portugal occupy a considerable part of the territory and harbor more than 2000 caves. The complex biogeographical history of the Iberian Peninsula allowed the survival of several relict arthropod refugees in the subterranean environment.

Subterranean invertebrates have been ignored, as for as the protection of karst systems are concerned in Portugal, largely because knowledge was scarce and disorganized. Reviewing all the bibliographic sources about subterranean fauna from Portugal and listing troglobiont and stygobiont species and locations, was essential to understand the state of knowledge of species richness and the biogeography and conservation status for the studied areas.

In order to understand subterranean biodiversity patterns in karst areas from Portugal, one year of intense fieldwork was performed in more than 40 caves from 14 karst units. Several new species for science were discovered and 7 taxa comprising 2 new genera and 5 new species were described.

Bearing in mind that spatial distribution of subterranean species is crucial to ecological research and conservation, the distribution of hypogean species, from Portuguese karst areas, was mapped using geographic information systems. Also, its subterranean richness was compared with other areas of the world and missing species were estimated on a regional scale. The subterranean biodiversity patterns were analyzed, and several factors were tested to explain richness patterns. Evapotranspiration and the consequent high productivity on the surface may be determinant in the species richness in the different karst units of Portugal, but the depth of the caves and the unique geological features of every massif seemed to play a more important role.

In order to evaluate the tolerance of organisms to groundwater contamination, the acute toxicity of two substances were tested on stygobiont crustaceans with different degrees of troglomorphism. Our study showed that the high levels of endemism contribute to remarkably different toxicological responses within the same genus.

The major problems related to conservation of subterranean habitats were associated to direct destruction and their contamination. These ecosystems lack of specific protection, implying an adequate management of surface habitats and the establishment of priority areas. Integrating all the previous information, this study establishes a ranking of sites for conservation of subterranean fauna in karst areas of Portugal.This research is a contribution to the study of subterranean biodiversity in karst areas of Portugal, towards its conservation.

The relative inaccessibility of the subterranean environment is a challenge for the study of its fauna, often accessible only in caves but more widely distributed. The subterranean animals are among the most rare, threatened and worldwide underprotected, often by the simple fact of being unknown.

Karst areas of Portugal occupy a considerable part of the territory and harbor more than 2000 caves. The complex biogeographical history of the Iberian Peninsula allowed the survival of several relict arthropod refugees in the subterranean environment.

Subterranean invertebrates have been ignored, as for as the protection of karst systems are concerned in Portugal, largely because knowledge was scarce and disorganized. Reviewing all the bibliographic sources about subterranean fauna from Portugal and listing troglobiont and stygobiont species and locations, was essential to understand the state of knowledge of species richness and the biogeography and conservation status for the studied areas.

In order to understand subterranean biodiversity patterns in karst areas from Portugal, one year of intense fieldwork was performed in more than 40 caves from 14 karst units. Several new species for science were discovered and 7 taxa comprising 2 new genera and 5 new species were described.

Bearing in mind that spatial distribution of subterranean species is crucial to ecological research and conservation, the distribution of hypogean species, from Portuguese karst areas, was mapped using geographic information systems. Also, its subterranean richness was compared with other areas of the world and missing species were estimated on a regional scale. The subterranean biodiversity patterns were analyzed, and several factors were tested to explain richness patterns. Evapotranspiration and the consequent high productivity on the surface may be determinant in the species richness in the different karst units of Portugal, but the depth of the caves and the unique geological features of every massif seemed to play a more important role.

In order to evaluate the tolerance of organisms to groundwater contamination, the acute toxicity of two substances were tested on stygobiont crustaceans with different degrees of troglomorphism. Our study showed that the high levels of endemism contribute to remarkably different toxicological responses within the same genus.

The major problems related to conservation of subterranean habitats were associated to direct destruction and their contamination. These ecosystems lack of specific protection, implying an adequate management of surface habitats and the establishment of priority areas. Integrating all the previous information, this study establishes a ranking of sites for conservation of subterranean fauna in karst areas of Portugal.


Effective porosity of a carbonate aquifer with bacterial contamination: Walkerton, Ontario, Canada, 2012, Worthington S. R. H. , Smart C. C. , Ruland W.

Preferential flow through solutionally enlarged fractures can be a significant influence on travel times and source area definition in carbonate aquifers. However, it has proven challenging to step beyond a conceptual model to implementing, parameterizing and testing an appropriate numerical model of preferential flow. Here both porous medium and preferential flow models are developed with respect to a deadly contamination of the municipal groundwater supply at Walkerton, Ontario, Canada. The preferential flow model is based on simple orthogonal fracture aperture and spacing. The models are parameterized from bore hole, gamma, flow and video logs resulting in a two order of magnitude lower effective porosity for the preferential flow model. The observed hydraulic conductivity and effective porosity are used to predict groundwater travel times using a porous medium model. These model predictions are compared to a number of independent estimates of effective porosity, including three forced gradient tracer tests. The results show that the effective porosity and hydraulic conductivity values closely match the preferential flow predictions for an equivalent fracture network of _10 m spacing of 1 mm fractures. Three tracer tests resulted in groundwater velocities of hundreds of meters per day, as predicted when an effective porosity of 0.05% was used in the groundwater model. These velocities are consistent with a compilation of 185 tracer test velocities from regional Paleozoic carbonate aquifers. The implication is that carbonate aquifers in southern Ontario are characterized by relatively low-volume dissolutionally enlarged fracture networks that dominate flow and transport. The porous matrix has large storage capacity, but contributes little to transport. Numerical models based on much higher porosities risk significantly underestimating capture zones in such aquifers. The hydraulic conductivity – effective porosity prediction framework provides a general analytical frame work for a preferential flow carbonate aquifer. Not only is the framework readily parameterized from borehole observations, but also it can be implemented in a conventional porous medium model, and critically tested using simple tracer tests.


Isotopic and hydrochemical data as indicators of recharge areas, flow paths and waterrock interaction in the Caldas da RainhaQuinta das Janelas thermomineral carbonate rock aquif, 2013, Marques J. M. , Graa H. , Eggenkamp H. G. M. , Neves O. , Carreira P. M. , Matias M. J. , Mayer B. , Nunes D. , Trancoso V. N.

An updated conceptual circulation model for the Caldas da Rainha and Quinta das Janelas thermomineralwaters was developed. These thermomineral waters (T _ 33 _C) are related to a huge syncline ascribed tothe regional flow paths. Two diapiric structures were responsible for the uplift and subsequent folding ofregional Jurassic carbonate rocks. Environmental isotopic (d2H and d18O) data indicates that the mainrecharge area of the thermomineral system is linked to the Jurassic limestones (Candeeiros Mountains,E border of the syncline). The thermomineral waters belong to the Cl–Na sulphurous-type, with a totalmineralization of about 3000 mg/L. The thermomineral aquifer system seems to be ‘‘isolated’’ fromanthropogenic contamination, which is typical for the local shallow groundwater systems, due to theexistence of impermeable layers composed of a series of loamy and detritic rocks of the Upper Jurassic.The presence of 3H in some thermomineral borehole waters, not accompanied by an increase in SO2_4 andNO_3 , could be ascribed to different underground flow paths and different mean residence time. Thed34S(SO4) and d18O(SO4) values of dissolved sulphate of groundwaters of the Caldas da Rainha Spas indicatethat the sulphate is the result of water–rock interaction with evaporitic rocks (e.g. gypsum and anhydrite)ascribed to the regional synclinal structure.


Evaluation of Strategies for the Decontamination of equipment for Geomyces destructans, the Causative Agent of the White-Nose Syndrome (WNS), 2013, Shelley V. , Kaiser S. , Shelley E. , Williams T. , Kramer M. , Haman K. , Keel K. , Barton H. A.

 

White-nose syndrome is an emerging infectious disease that has led to a
dramatic decline in cave-hibernating bat species. White-nose syndrome is caused by the
newly described fungal pathogen Geomyces destructans, which infects the ear, muzzle,
and wing membranes of bats. Although the exact mechanism by which the fungus causes
death is not yet understood, G. destructans leads to a high mortality rate in infected
animals.While the primary mechanism of infection appears to be bat-to-bat transfer, it is
still unclear what role human activity may play in the spread of this pathogen. Here we
evaluate the effectiveness of decontamination protocols that can be utilized by
speleologists to reduce the likelihood of spreading this dangerous pathogen to naı¨ve
bats or uninfected hibernacula. Our results show that pre-cleaning to remove muds and/
or sediments followed by the use of commercially available disinfectants can effectively
remove G. destructans from caving fabrics. Alternatively, immersion in water above
50 uC for at least 20 minutes effectively destroys the fungal spores. These results have
allowed the development of a decontamination protocol (http://www.fws.gov/
WhiteNoseSyndrome/cavers.html) that, when appropriately followed, can greatly
reduce the likelihood of the human mediated transfer of G. destructans from an
infected to uninfected site.


A model for the formation of layered soda-straw stalactites, 2013, Paul Bence, Drysdale R. , Green Helen, Woodhead Jon, Hellstrom John, Eberhard Rolan

Climate records based upon instrumental data such as rainfall measurements are usually only available for approximately the last 150 years at most. To fully investigate decadal-scale climate variation, however, these records must be extended by the use of climate proxies. Soda-straw stalactites (straws) are a previously under-utilised potential source of such data. In this contribution we investigate the structure and formation of straws and look at some issues that may affect the reliability of straw-based palaeoclimate records. We use laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) trace element analysis to document surface contamination features that have the potential to obscure annual trace element variations, and develop a method to reveal the underlying layering. We also use LA- ICP-MS to map the two-dimensional trace element distribution in straws. These maps reveal straw-layer geometry, in which layers are widest at the outside edge of the straw, narrowing and becoming almost parallel on the interior of the straw.

Based upon these observations, we present a model for the formation of straws of this type, where rapid degassing of CO2 from the drip extending below the straw forms the wider outer layers. Summers are defined by increased layer widths and higher trace element contents relative to winter layers. In palaeoclimate studies, where such annual variations can be used to construct time-lines, we suggest that, ideally, the outside surface of the straw be analysed where the trace element content difference is greatest and layering is widest.

The terminal phase of one straw (FC-02) shows decreasing layer widths and increased trace element contents. These features may also be representative of soda-straw responses to drought-induced decreases in percolation water.


COMPLEX EPIKARST HYDROLOGEOLOGY AND CONTAMINANT TRANSPORT IN A SOUTH-CENTRAL KENTUCKY KARST LANDSCAPE, 2013, Polk J. S. , Vanderhoff S. , Groves C. , Miller B. , Bolster C.

 

The movement of autogenic recharge through the shallow epikarstic zone in soil-mantled karst aquifers is important in understanding recharge areas and rates, storage, and contaminant transport processes. The groundwater in agricultural karst areas, such as Kentucky’s Pennyroyal Plateau, which is characterized by shallow epikarst and deeper conduits flow, is susceptible to contamination from organic soil amendments and pesticides. To understand the storage and flow of autogenic recharge and its effects on contaminant transport on water flowing to a single epikarst drain in Crump’s Cave on Kentucky’s Mississippian Plateau, we employed several techniques to characterize the nature and hydrogeology of the system. During 2010–2012, water samples and geochemical data were collected every four hours before, during, and between storm events from a waterfall in Crumps Cave to track the transport and residence time of epikarst water and organic soil amendments during variable flow conditions. Geochemical data consisting of pH, specific conductivity, temperature, and discharge were collected continuously at 10-minute intervals, along with rainfall amounts. In addition, stable isotope data from rainfall, soil water, and epikarst water were collected weekly and during storm events to examine storage and recharge behavior of the system. The changes in geochemistry indicate simultaneous storage and transport of meteoric water through epikarst pathways into the cave, with rapid transport of bacteria occurring through the conduits that bypass storage. The isotopic data indicate that recharge is rapidly homogenized in the epikarst, with storage varying throughout the year based on meteorological conditions. Results indicate current best management practices in agricultural karst areas need to be revisited to incorporate areas that do not have surface runoff, but where contaminants are transported by seepage into local aquifers.


Clay cortex in epikarst forms as an indicator of age and morphogenesis—case studies from Lublin–Volhynia chalkland (East Poland,West Ukraine), 2014,

Clay cortex from the contact zone between the host rock (chalk) and infilling deposits were examined in

paleokarst forms (pockets, pipes, and dolines of different age) from the Lublin–Volhynia chalk karst region. In light of the sedimentological and micromorphological analyses, it seems possible to work out a model as the basis for genetic and stratigraphic discussions. (1) Dolineswith the Paleogene orNeogene mineral infills are characterized by (a) homogeneous, residual type of massive clay gradually passing into the chalkmonolith, and at the sametime(b) relatively thickweathered zone. (2) Pipeswith glacigenic mineral infill fromthe Saalian Glacial are characterized by (a) sharp contact between host rock and clay, (b) narrow weathering zone of chalk, (c) diffuse nature of the contact zone between residual clay and mineral infill, and (d) contamination of clay by clastic material. (3) Pocketswith glacigenic mineral infill and traces of theWeichselian periglacial transformation are characterized by (a) strong contamination of chalk by quartz grains, (b) diffuse transition between clay and infill: fromclayey matrixwith single quartz grains (at the contactwith chalk) to clayey coatings and intergranular bridges (in the infill), (c) intensive weathering (cracking) of mineral grains in the infill.


Hydrogeological Characteristics of Carbonate Formations of the Cuddapah Basin, India, 2014, Farooq Ahmad Dar

Karst hydrogeology is an important field of earth sciences as the aquifers in carbonate formations represent vital resource of groundwater that feeds a large part of the world population particularly in semi-arid climates. These unique aquifers posses peculiar characteristics developed by dissolutional activities of water. Karst aquifers possess a typical hydrogeological setup from surface to subsurface. The aquifers are governed by slow groundwater flow in matrix porosity, a medium to fast flow in fractures and rapid flow in conduits and channels. This large variability in their properties makes the prediction and modeling of flow and transport very cumbersome and data demanding. The aquifers are vulnerable to contamination as the pollutants reach the aquifer very fast with little or no attenuation. The geomorphological and hydrogeological properties in these aquifers demand specific techniques for their study. The carbonate aquifers of the semi-arid Cuddapah basin were characterized based on geomorphological, hydrogeological and hydrochemical investigations. All the formations are highly karstified possessing one of the longest and deepest caves of India and few springs along with unique surface features. Karstification is still in progress but at deeper levels indicated by growing speleothems of different architectural size. Model of karstification indicates that lowering of base level of erosion resulted in the dissolution of deeper parts of the limestone as represented by paleo-phreatic conduits in the region. Moist conditions of the past were responsible for the karst development which has been minimized due to the onset of monsoon conditions. Karst has developed at various elevations representing the past base levels in the region.

The recharge processes in these aquifers are complex due to climatic and karst specificities. Point recharge is the major contributor which enters the aquifer as allogenic water. It replenishes the groundwater very rapidly. Diffuse recharge travels through soil and epikarst zone. Average annual recharge of semi-arid Narji limestone aquifer is 29% of the rainfall which occurs during 5-7 rain events in the year.

The hydrogeochemical characteristic of karst aquifers is quite varaible. A significant difference is observed in hydrochemistry. High concentrations of SO42-, Cl-, NO3- suggests the anthropogenic source particularly from agriculture. Local Meteoric Water Line of δ2H and δ18O isotopes of rain and groundwater shows a slope of 7.02. Groundwater isotope data shows more depletion in heavy isotopes -a result of high evaporation of the area. Groundwater samples show a trend with a slope of 4 and 3.1 for δ2H and δ18O respectively. Groundwater during dry months gets more fractionated due to higher temperature and little rainfall. The irrigated water becomes more enriched and then recharges the aquifer as depleted irrigation return flow. The isotopes show large variation in spring water. Few springs are diffuse or mixed type and not purely of conduit type in the area. Tracer results indicate that the tracer output at the sampling location depends on the hydrogeological setup and the nature of karstification.

The study has significantly dealt with in disclosing the typical characteristics of such aquifer systems and bringing out a reliable as well as detailed assessment of various recharges to the system. The groundwater chemistry has been elaborated to establish the nature of possible hydrochemical processes responsible for water chemistry variation in semi-arid karst aquifer. Such study has thrown light on the aquifers that are on one hand very important from social and strategic point of view and on the hand were left unattended from the detailed scientific studies.


Karstification of Dolomitic Hills at south of Coimbra (western-central Portugal) - Depositional facies and stratigraphic controls of the (palaeo)karst affecting the Coimbra Group (Lower Jurassic), 2014, Dimuccio, Luca Antonio

An evolutionary model is proposed to explain the spatio-temporal distribution of karstification affecting the Lower Jurassic shallow-marine carbonate succession (Coimbra Group) of the Lusitanian Basin, cropping out in the Coimbra-Penela region (western-central Portugal), in a specific morphostructural setting (Dolomitic Hills). Indeed, in the Coimbra Group, despite the local lateral and vertical distributions of dolomitic character and the presence of few thick sandy-argillaceous/shale and marly interbeds, some (meso)karstification was identified, including several microkarstification features. All types of karst forms are commonly filled by autochthonous and/or allochthonous post-Jurassic siliciclastics, implying a palaeokarstic nature.

The main aim of this work is to infer the interplay between depositional facies, diagenesis, syn- and postdepositional discontinuities and the spatio-temporal distribution of palaeokarst. Here, the palaeokarst concept is not limited to the definition of a landform and/or possibly to an associated deposit (both resulting from one or more processes/mechanisms), but is considered as part of the local and regional geological record.

Detailed field information from 21 stratigraphic sections (among several dozens of other observations) and from structural-geology and geomorphological surveys, was mapped and recorded on graphic logs showing the lithological succession, including sedimentological, palaeontological and structural data. Facies determination was based on field observations of textures and sedimentary structures and laboratory petrographic analysis of thin-sections. The karst and palaeokarst forms (both superficial and underground) were classified and judged on the basis of present-day geographic location, morphology, associated discontinuities, stratigraphic position and degree of burial by post-Jurassic siliciclastics that allowed to distinguish a exposed karst (denuded or completely exhumed) than a palaeokarst (covered or partially buried).

A formal lithostratigrafic framework was proposed for the local ca. 110-m-thick combined successions of Coimbra Group, ranging in age from the early Sinemurian to the early Pliensbachian and recorded in two distinct subunits: the Coimbra formation, essentially dolomitic; and the overlying S. Miguel formation, essentially dolomitic-limestone and marly-limestone.

The 15 identified facies were subsequently grouped into 4 genetically related facies associations indicative of sedimentation within supra/intertidal, shallow partially restricted subtidal-lagoonal, shoal and more open-marine (sub)environments - in the context of depositional systems of a tidal flat and a very shallow, inner part of a low-gradient, carbonate ramp. In some cases, thick bedded breccia bodies (tempestites/sismites) are associated to synsedimentary deformation structures (slumps, sliding to the W to NW), showing the important activity of N–S and NNE–SSW faults, during the Sinemurian. All these deposits are arranged into metre-scale, mostly shallowing-upward cycles, in some cases truncated by subaerial exposure events. However, no evidence of mature pedogenetic alteration, or the development of distinct soil horizons, was observed. These facts reflect very short-term subaerial exposure intervals (intermittent/ephemeral), in a semiarid palaeoclimatic setting but with an increase in the humidity conditions during the eogenetic stage of the Coimbra Group, which may have promoted the development of micropalaeokarstic dissolution (eogenetic karst).

Two types of dolomitization are recognized: one (a) syndepositional (or early diagenetic), massive-stratiform, of “penesaline type”, possibly resulting from refluxing brines (shallow-subtidal), with a primary dolomite related to the evaporation of seawater, under semiarid conditions (supra/intertidal) and the concurrent action of microbial activity; another (b) later, localized, common during diagenesis (sometimes with dedolomitization), particularly where fluids followed discontinuities such as joints, faults, bedding planes and, in some cases, pre-existing palaeokarstic features.

The very specific stratigraphic position of the (palaeo)karst features is understood as a consequence of high facies/microfacies heterogeneities and contrasts in porosity (both depositional and its early diagenetic modifications), providing efficient hydraulic circulation through the development of meso- and macropermeability contributed by syn- and postdepositional discontinuities such as bedding planes, joints and faults. These hydraulic connections significantly influenced and controlled the earliest karst-forming processes (inception), as well as the degree of subsequent karstification during the mesogenetic/telogenetic stages of the Coimbra Group. Multiple and complex karstification (polyphase and polygenic) were recognized, including 8 main phases, to local scale, integrated in 4 periods, to regional scale: Jurassic, Lower Cretaceous, pre-Pliocene and Pliocene-Quaternary. Each phase of karstification comprise a specific type of (palaeo)karst (eogenetic, subjacent, denuded, mantled-buried and exhumed).

Finally, geological, geomorphological and hydrogeological characteristics allowed to describe the local aquifer. The elaborated map of intrinsic vulnerability shows a karst/fissured and partially buried aquifer (palaeokarst) with high to very high susceptibility to the contamination.


Deep speleological salt contamination in Mediterranean karst aquifers: perspectives for water supply, 2015,

On the Mediterranean coast, submarine karst springs are common. Most of them are brackish and various unsuccessful attempts in France, Greece, and Italy indicate that it is impossible to diminish the salinity at the spring. Based on studies on the shores of south-eastern France and in Kefalonia (Greece), we propose a working model that explains the mechanism of salt contamination. During the Messinian Deep Stage (-5.9 to 5.3 Ma), a substantial sea-level lowering in the Mediterranean allowed the existence of cave networks extending several hundreds of meters below the present sea level. Seawater is now sucked into the system through these caves. This mechanism is supported by a study of the Port Miou underground river (Cassis, France). In the Port Miou cave system, which extends to 250 m below sea level, titanium and heavy metals are present in the sediment. They are similar to those found in the Cassidaigne submarine canyon, which reinforces the hypothesis of a connection between the cave and the canyon. Recent geological studies prove a Messinian origin for the canyon and support the deep contamination model. The model is also supported by examples on Kefalonia Island (Greece) and in the Toix–Moraig system (Spain) where salt-water intrusions are observed in coastal sinkholes and sea caves. This model explains why various attempts to diminish the salinity of these brackish springs, through the construction of dams to increase head, have failed.On the Mediterranean coast, submarine karst
springs are common. Most of them are brackish and various
unsuccessful attempts in France, Greece, and Italy
indicate that it is impossible to diminish the salinity at the
spring. Based on studies on the shores of south-eastern
France and in Kefalonia (Greece), we propose a working
model that explains the mechanism of salt contamination.
During the Messinian Deep Stage (-5.9 to 5.3 Ma), a
substantial sea-level lowering in the Mediterranean
allowed the existence of cave networks extending several
hundreds of meters below the present sea level. Seawater is
now sucked into the system through these caves. This
mechanism is supported by a study of the Port Miou
underground river (Cassis, France). In the Port Miou cave
system, which extends to 250 m below sea level, titanium
and heavy metals are present in the sediment. They are
similar to those found in the Cassidaigne submarine canyon,
which reinforces the hypothesis of a connection
between the cave and the canyon. Recent geological
studies prove a Messinian origin for the canyon and support
the deep contamination model. The model is also
supported by examples on Kefalonia Island (Greece) and in
the Toix–Moraig system (Spain) where salt-water intrusions
are observed in coastal sinkholes and sea caves. This
model explains why various attempts to diminish the
salinity of these brackish springs, through the construction
of dams to increase head, have failed.


Results 136 to 150 of 150
You probably didn't submit anything to search for